Search results for "Neuron"

showing 10 items of 2611 documents

Adult rat myelin enhances axonal outgrowth from neural stem cells.

2018

Axon regeneration after spinal cord injury (SCI) is attenuated by growth inhibitory molecules associated with myelin. We report that rat myelin stimulated the growth of axons emerging from rat neural progenitor cells (NPCs) transplanted into sites of SCI in adult rat recipients. When plated on a myelin substrate, neurite outgrowth from rat NPCs and from human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) was enhanced threefold. In vivo, rat NPCs and human iPSC-derived NSCs extended greater numbers of axons through adult central nervous system white matter than through gray matter and preferentially associated with rat host myelin. Mechanistic investigations excluded …

0301 basic medicineAgingNeuronalNudeMessengerNeurodegenerativeInbred C57BLRegenerative MedicineMedical and Health SciencesMyelinMiceNeural Stem CellsStem Cell Research - Nonembryonic - HumanCyclic AMPAxonPhosphorylationGray MatterInduced pluripotent stem cellExtracellular Signal-Regulated MAP KinasesSpinal Cord InjuryMyelin SheathInbred F344Neuronal growth regulator 1Stem Cell Research - Induced Pluripotent Stem Cell - HumanChemistryGeneral MedicineBiological SciencesWhite MatterNeural stem cellCell biologymedicine.anatomical_structureSpinal Cord5.1 PharmaceuticalsNeurologicalFemaleStem Cell Research - Nonembryonic - Non-HumanDevelopment of treatments and therapeutic interventionsPhysical Injury - Accidents and Adverse EffectsNeuriteCell Adhesion Molecules NeuronalCentral nervous systemNeuronal OutgrowthArticleWhite matter03 medical and health sciencesRats NudemedicineAnimalsHumansRNA MessengerStem Cell Research - Embryonic - HumanTraumatic Head and Spine InjuryTransplantationStem Cell Research - Induced Pluripotent Stem CellNeurosciencesStem Cell ResearchRats Inbred F344AxonsRatsMice Inbred C57BL030104 developmental biologynervous systemChondroitin Sulfate ProteoglycansRNACell Adhesion Molecules
researchProduct

The Early Indicators of Functional Decrease in Mild Cognitive Impairment

2016

OBJECTIVES: Motor deficiency is associated with cognitive frailty in patients with Mild Cognitive Impairments (MCI). In this study we aimed to test the integrity of the muscle synergy involved in an arm-pointing movement in MCI patients, non-impaired functionally. Thus, we were able to test the hypothesis that early motor indicators exist in this population at a preclinical level. METHODS: The electromyographic signals were collected for 11 muscles in 3 groups: Young Adults (YA), Aged Adults (AA), and MCI patients. The AA and MCI groups presented the same functional status. Each subject performed twenty arm-pointing movements from a standing position. RESULTS: The main differences were (1) …

0301 basic medicineAgingmedicine.medical_specialtycognitive functionsMild Cognitive ImpairmentsCognitive NeurosciencePopulationMotor program[ SDV.MHEP.GEG ] Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontologylow-back-painarm movementsbehavioral disciplines and activitiesequilibrium03 medical and health sciences0302 clinical medicinePhysical medicine and rehabilitationpart-bmental disordersmedicinemotor controlvoluntaryolder-adultsYoung adultalzheimers-diseaseeducationMuscle synergyanticipatory postural adjustmentsOriginal Researcheducation.field_of_study[SDV.MHEP.GEG]Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontologymuscle synergyage-related-changesMotor controlCognitionExecutive functionsLow back painnervous system diseases030104 developmental biology[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Physical therapy[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]parkinsons-diseasemedicine.symptomPsychology030217 neurology & neurosurgeryNeuroscience
researchProduct

Evidence of resistance training-induced neural adaptation in older adults

2021

The deleterious effects of aging on force production are observable from the age of 40 upwards, depending on the measure. Neural mechanisms contributing to maximum force production and rate of force development have been suggested as descending drive from supraspinal centers, spinal motoneuron excitability, and corticospinal inhibition of descending drive; all of which influence motor unit recruitment and/or firing rate. Resistance-trained Master athletes offer a good source of information regarding the inevitable effects of aging despite the countermeasure of systematic resistance-training. However, most evidence of neural adaptation is derived from longitudinal intervention studies in pre…

0301 basic medicineAgingmedicine.medical_treatmentCortical imagingBiochemistry0302 clinical medicineEndocrinologymotor unitvoimantuotto (fysiologia)motoneuroninterventionMotor NeuronsbiologyexercisekuntoliikuntaNeural adaptationinterventiotutkimusAdaptation PhysiologicalTranscranial Magnetic Stimulationmedicine.anatomical_structurehermo-lihastoimintaneuromuscularvoimaharjoittelustrengthRecruitment Neurophysiologicalmedicine.medical_specialty03 medical and health sciencesPhysical medicine and rehabilitationGood evidenceGeneticsmedicineHumansMuscle SkeletalMolecular BiologyAgedAthletesbusiness.industryElectromyographyagingResistance trainingResistance TrainingCell Biologybiology.organism_classificationMotor unitTranscranial magnetic stimulation030104 developmental biologyikääntyminenMotor unit recruitmentbusiness030217 neurology & neurosurgerylihasvoima
researchProduct

Longevity-related molecular pathways are subject to midlife “switch” in humans

2019

Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear “signature” was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF‐1/PI3K/mTOR pathway that mimicked, and 5 activators that oppos…

0301 basic medicineAgingved/biology.organism_classification_rank.speciesMuscle Fibers SkeletallihaksetTranscriptome0302 clinical medicineGene expressionGene Regulatory NetworksRNA-Seqmedia_commonCerebral CortexNeuronsreactive oxygen speciesihoTOR Serine-Threonine Kinasesmitochondrial complex 1LongevityBrainNon-coding RNAAlzheimer'sECSITCell biologytranskriptio (biologia)mTORRNA Long NoncodingOriginal ArticleaivotSignal TransductionAdultTranscriptional ActivationskinIn silicomedia_common.quotation_subjectLongevityBiology03 medical and health sciencesHumanslong noncoding RNAskeletal muscleModel organismGeneSirolimusved/biologyagingRNACell BiologyTwins MonozygoticOriginal Articles030104 developmental biologyikääntyminenRNATranscriptome030217 neurology & neurosurgery
researchProduct

Subchronic vortioxetine treatment -but not escitalopram- enhances pyramidal neuron activity in the rat prefrontal cortex.

2017

Abstract Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT 3 -R, 5-HT 7 -R and 5-HT 1D -R antagonist, 5-HT 1B -R partial agonist, 5-HT 1A -R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p -chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of …

0301 basic medicineAgonistMalegenetic structuresmedicine.drug_classSerotonin reuptake inhibitorAction PotentialsPrefrontal CortexPharmacologyCitalopramSulfidesPartial agonistPiperazines03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicinePremovement neuronal activityAnimalsRats WistarSerotonin transporterPharmacologyVortioxetinebiologyPyramidal CellsAntagonistAntidepressive AgentsRats030104 developmental biologybiology.proteinAntidepressantVortioxetinesense organsPsychologyNeuroscience030217 neurology & neurosurgerySelective Serotonin Reuptake InhibitorsNeuropharmacology
researchProduct

Heat shock protein (Hsp) regulation by muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus.

2018

The cholinergic system plays a crucial role in modulating in the central nervous system physiological responses such as neurogenesis, neuronal differentiation, synaptic plasticity, and neuroprotection. In a recent study, we showed that Oxotremorine-M, a non-selective muscarinic acetylcholine receptor agonist, is able to transactivate the fibroblast growth factor receptor and to produce a significant increase in the hippocampal primary neurite outgrowth. In the present study we aimed to explore in the rat hippocampus the possible effect of acute or chronic treatment with Oxotremorine-M on some heat shock proteins (Hsp60, Hsp70, Hsp90) and on activation of related transcription factor heat sh…

0301 basic medicineAgonistMalemedicine.medical_specialtymedicine.drug_classPhysiologyClinical BiochemistryNeuronal OutgrowthScopolamineheat shock proteinHsp90NeuroprotectionHippocampusHsp7003 medical and health sciencesmuscarinic receptor0302 clinical medicineHeat Shock Transcription FactorsHeat shock proteinInternal medicineMuscarinic acetylcholine receptormedicineOxotremorineAnimalsRats WistarHSF1Heat-Shock ProteinsNeuronsNeuronal PlasticityChemistryOxotremorineNeurodegenerative DiseasesCell BiologyReceptors Fibroblast Growth FactorReceptors MuscarinicHsp70Rats030104 developmental biologyEndocrinologyheat shock factor 1HSP60030217 neurology & neurosurgerymedicine.drugSignal TransductionJournal of cellular physiology
researchProduct

Tocotrienol Affects Oxidative Stress, Cholesterol Homeostasis and the Amyloidogenic Pathway in Neuroblastoma Cells: Consequences for Alzheimer’s Dise…

2016

One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol…

0301 basic medicineAlzheimer´s diseasemedicine.medical_treatmentvitamin Eγ-secretasemedicine.disease_causeAntioxidantslcsh:ChemistryNeuroblastomachemistry.chemical_compoundAβ degradation0302 clinical medicineβ-secretaselcsh:QH301-705.5SpectroscopyNeuronschemistry.chemical_classificationbiologyTocotrienolsGeneral Medicinetocopherol3. Good healthComputer Science ApplicationsCholesterolNeuroprotective AgentsTocotrienolmedicine.medical_specialtyAmyloidamyloid-βNeuroprotectionArticleGene Expression Regulation EnzymologicCatalysisCell LineInorganic Chemistry03 medical and health sciencesAlzheimer DiseaseInternal medicinemedicineHumanstocotrienolPhysical and Theoretical ChemistryMolecular BiologyReactive oxygen speciesAmyloid beta-PeptidesCholesterolVitamin EOrganic Chemistrytocotrienol; vitamin E; Alzheimer´s disease; amyloid-β; tocopherol; Aβ degradation; β-secretase; γ-secretaseOxidative Stress030104 developmental biologyEndocrinologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinAmyloid Precursor Protein SecretasesReactive Oxygen SpeciesAmyloid precursor protein secretase030217 neurology & neurosurgeryOxidative stressInternational Journal of Molecular Sciences
researchProduct

Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

2016

Summary Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent wit…

0301 basic medicineAmino Acid Transport Systemsheavy-chainmedicine.medical_treatmentInsulinsamino acid transporter0302 clinical medicinegenetics [Drosophila Proteins]cytology [Drosophila melanogaster]Glutamate DehydrogenaseHemolymphInsulin-Secreting Cellsmetabolism [Drosophila melanogaster]HemolymphDrosophila;Drosophila insulin-like peptides;amino acid transporter;food;glutamate dehydrogenase;glycemia;growth;insulin-producing cells;minidiscs;starvationDrosophila ProteinsProtein Isoformsmetabolism [Calcium]genetics [Insulins]genetics [Amino Acid Transport Systems]lcsh:QH301-705.5minidiscsGene knockdowncytology [Larva]pancreatic beta-cellglutamate dehydrogenaseBrainmetabolism [Hemolymph]secretionDrosophila melanogasterBiochemistryLarvaAlimentation et NutritionDrosophilaLeucineSignal Transductionglucose-transportgenetics [Glutamate Dehydrogenase]genetics [Protein Isoforms]growthamino-acidsmetabolism [Drosophila Proteins][SDV.BC]Life Sciences [q-bio]/Cellular BiologyNutrient sensingmetabolism [Larva]Biologyinsulin-producing cellsArticleGeneral Biochemistry Genetics and Molecular Biologymetabolism [Amino Acid Transport Systems]metabolism [Insulins]03 medical and health sciencesLeucineparasitic diseasesmedicineFood and NutritionAnimalsddc:610cytology [Insulin-Secreting Cells]cardiovascular diseasesAmino acid transporterMnd protein Drosophilaadministration & dosage [Leucine]metabolism [Protein Isoforms]Ilp5 protein Drosophilacytology [Brain]foodGlutamate dehydrogenaseInsulinNeurosciencesstarvationGlucose transportermetabolism [Insulin-Secreting Cells]glutamate-dehydrogenasel-leucineglycemia030104 developmental biologyGene Expression Regulationlcsh:Biology (General)metabolism [Brain]metabolism [Glutamate Dehydrogenase]Neurons and Cognitionmetabolism [Leucine]CalciumDrosophila insulin-like peptidesmetabolismfat-cells030217 neurology & neurosurgeryCell Reports
researchProduct

Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

2018

Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L-1, which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (infra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis o…

0301 basic medicineAnalyteLipid peroxidationUrineUrineIsoprostanesAnalytical ChemistryLipid peroxidation03 medical and health scienceschemistry.chemical_compoundIsoprostaneAlzheimer DiseaseTandem Mass SpectrometrymedicineHumansNeuroprostanesCognitive impairmentFuransChromatography High Pressure LiquidDetection limitChromatographyMass spectrometryIsofuranBiomarkerReceptors Prostaglandin E EP2 Subtypemedicine.disease030104 developmental biologychemistryPotential biomarkers[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]NeuroprostanesLipid PeroxidationNeurological damageAlzheimer's disease[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyBiomarkersTalanta
researchProduct

Role of Regular Physical Activity in Neuroprotection against Acute Ischemia

2020

One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function followi…

0301 basic medicineAngiogenesismyokinesphysical activityReviewneurotrophinsAntioxidantsBrain Ischemialcsh:Chemistry0302 clinical medicineNeurotrophic factorsneuronal recoverylcsh:QH301-705.5SpectroscopybiologyGeneral MedicineNeuroprotectionComputer Science ApplicationsAcute DiseaseNeurotrophinmedicine.symptomNeurotrophinTraumatic brain injuryIschemiaInflammationNeuroprotectionCatalysisInorganic Chemistry03 medical and health sciencesHormesisMyokineMyokinemedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryExerciseMolecular Biologybusiness.industryOrganic Chemistrymedicine.disease030104 developmental biologylcsh:Biology (General)lcsh:QD1-999inflammationbiology.proteinBrain-derived neurotrophic factor (BDNF)businessNeuroscience030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct