Search results for "Neutrino detector"

showing 10 items of 222 documents

Search for neutrino-induced cascades with five years of AMANDA data

2010

Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronFluxCosmic rayContext (language use)Cascades; NeutrinosAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cascades0103 physical sciencesNeutrinos010306 general physicsPhysicsFluxMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstronomy and AstrophysicsCosmic-RaysNucleiHigh-Energy NeutrinosNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoNeutrino astronomy
researchProduct

The Pros and Cons of Beyond Standard Model Interpretations of ANITA Events

2019

The Antarctic Impulsive Transient Antenna (ANITA) experiment has observed two air shower events with energy $\sim 500~{\rm PeV}$ emerging from the Earth with exit angles $\sim 30^\circ$ above the horizon. As was immediately noted by the ANITA Collaboration, these events (in principle) could originate in the atmospheric decay of an upgoing $\tau$-lepton produced through a charged current interaction of a $\nu_\tau$ inside the Earth. However, the relatively steep arrival angles of these perplexing events create tension with the standard model (SM) neutrino-nucleon interaction cross section. Deepening the conundrum, the IceCube neutrino telescope and the Pierre Auger Observatory with substanti…

airAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesparticle: messengerAstrophysics01 natural scienceshorizonneutrino nucleon: interactioncharged currentIceCubeHigh Energy Physics - Phenomenology (hep-ph)Observatory0103 physical sciences010306 general physicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger Observatoryneutrino/tauCOSMIC cancer databaseshowers: atmosphere010308 nuclear & particles physicsHorizonANITAAstrophysics::Instrumentation and Methods for AstrophysicstensionsensitivityAugerfluxobservatoryHigh Energy Physics - Phenomenologyneutrino: detectorAir showerNeutrino detector[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Event (particle physics)Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019)
researchProduct

Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts

2017

International audience; A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ( ν¯e ) that inverse beta decay on protons with energies from 1.8  MeV to 15  MeV and set the best limit on the neutrino fluence from GRBs below 8  MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino f…

antineutrinoselectronAntineutrinosneutrino: solarPhysics::Instrumentation and Detectorsdata acquisitionSolar neutrino[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical Phenomenalow energy/MeV neutrinosElectrongamma ray: burst01 natural sciencesNuclear physicsLow energy/MeV neutrino0103 physical sciencesNeutrinoLow energy/MeV neutrinosNeutrinosNuclear Experiment010303 astronomy & astrophysicsGamma-ray burstBorexinoscintillation counterPhysicsflavor010308 nuclear & particles physicsbackgroundgamma-ray burstsneutrinosAntineutrinos; Gamma-ray bursts; Low energy/MeV neutrinos; Neutrinos; Astronomy and AstrophysicsAstronomy and Astrophysicssemileptonic decayantineutrinocorrelation: timeNeutrino detectorInverse beta decayddc:540Scintillation counterreadoutHigh Energy Physics::ExperimentBorexinoGamma-ray burstsNeutrinoGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

First real–time detection of solar pp neutrinos by Borexino

2014

International audience; Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.

deuteronParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Solar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidgap7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530flavor: oscillation010306 general physicsNuclear ExperimentBorexinoPhysicsICARUSp p: fusion010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologytalk: Noto 2014/09/30Solar neutrino problemGran SassoNeutrino detectorneutrino: flavorMeasurements of neutrino speedCOUNTING TEST FACILITYHigh Energy Physics::Experimentdirect detectionBorexinoneutrino: oscillationNeutrino astronomyNeutrinoexperimental resultsneutrino: luminosity
researchProduct

Recent results from Borexino and the first real time measure of solar pp neutrinos

2014

International audience; The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos.Since the beginning of data taking, in May 2007, the unprecedented detector radio-purity made the performances of the detector unique: a milestone has been very recently achieved with the measurement of solar pp neutrino flux, providing the first direct observation in real time of the key fusion reaction powering the Sun.In this contribution the most important Borexino achievements to the fields of solar, geo-neutrino and…

geo-neutrinosNuclear and High Energy PhysicsParticle physicsNeutrino oscillationneutrino: solarPhysics::Instrumentation and DetectorsGeo-neutrinos; Neutrino oscillations; Solar neutrinos; Nuclear and High Energy PhysicsSolar neutrinotalk: Valencia 2014/07/02Solar neutrinosSolar neutrino01 natural sciences7. Clean energyPhysics::Geophysics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530010306 general physicsNeutrino oscillationBorexinoPhysicsneutrino oscillations010308 nuclear & particles physicsNeutrino oscillationsSolar neutrino problemGran SassoNeutrino detectorGeo-neutrinosolar neutrinosMeasurements of neutrino speedBorexinoHigh Energy Physics::Experimentneutrino: oscillationneutrino: geophysicsNeutrino astronomyNeutrinoexperimental resultsGeo-neutrinosNuclear and Particle Physics Proceedings
researchProduct

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

2018

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

interaction [cosmic radiation]Physics::Instrumentation and DetectorsSolar neutrinoGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCubeSubatomär fysikHigh Energy Physics - Experiment (hep-ex)ObservatorySubatomic PhysicsTOOLPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]ddc:observatoryNeutrino detectorPhysique des particules élémentairesAstrophysics::Earth and Planetary AstrophysicsNeutrinoParticle physicscosmic radiation [neutrino]acceleratorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Physics and Astronomy(all)IceCube Neutrino ObservatoryPhysics and Astronomy (all)0103 physical sciencesneutrino/muddc:530energy: high [neutrino]010306 general physicsNeutrino oscillationAstroparticle physics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemPhysics and Astronomy13. Climate actionmass [neutrino]High Energy Physics::ExperimentSYSTEMmixing angle [neutrino]experimental resultsPhysical Review Letters
researchProduct

CNO and pep solar neutrino measurements and perspectives in Borexino

2015

International audience; The detection of neutrinos emitted in the CNO reactions in the Sun is one of the ambitious goals of Borexino Phase-II. A measurement of CNO neutrinos would be a milestone in astrophysics, and would allow to solve serious issues in current solar models. A precise measurement of the rate of neutrinos from the pep reaction would allow to investigate neutrino oscillations in the MSW transition region. The pep and CNO solar neutrino physics, the measurement in Borexino Phase-I and the perspectives for the new phase are reviewed in this proceeding.

model: solarHistoryneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena7. Clean energy01 natural sciencesEducationNuclear physicsPhysics and Astronomy (all)talk: Moscow 2015/10/050103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar Astrophysicsddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationBorexinoMSW effectPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemComputer Science ApplicationsMassless particleNeutrino detector13. Climate actionHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrinoLeptonexperimental results
researchProduct

Neutrino Flavor Sensitivity of Large Liquid Scintillator Detectors

2015

Abstract Scintillator detectors are known for their good light yield, energy resolution, timing characteristics and pulse shape discrimination capabilities. These features make the next-generation liquid scintillation detector LENA[1] (Low Energy Neutrino Astronomy) the optimal choice for a wide range of astro-particle topics including supernova-, solar-, and geo neutrinos. In addition to the excellent calorimetric and timing properties, scintillartor detectors (LSDs) are also capable of topology reconstruction sufficient to discriminate with adequate efficiency between electron and muon neutrino induced charge current events and neutral current events in the GeV energy range. This feature …

neutrino mass hierarchyPhysicsParticle physicsLiquid scintillation detectors.ta114Physics::Instrumentation and DetectorsLiquid scintillation countingDetectorPhysics and Astronomy(all)Scintillator7. Clean energyNuclear physicsNeutrino detectorneutrino physicsliquid scintillation detectorsMeasurements of neutrino speedHigh Energy Physics::ExperimentMuon neutrinoNeutrinoNeutrino astronomyPhysics Procedia
researchProduct