Search results for "Neutron capture"

showing 10 items of 86 documents

The Nuclear astrophysics program at n_TOF (CERN)

2017

An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…

Nuclear reactionAstrofísicaAstrophysics and AstronomyCross-sectionnTOFQC1-999Astrophysics::High Energy Astrophysical PhenomenaNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astrophysics01 natural sciences7. Clean energyn_TOF nuclear astrophysics CERNNuclear physicsPhysics and Astronomy (all)Stellar nucleosynthesisBig Bang nucleosynthesisNucleosynthesis0103 physical sciencesCERNNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNuclear Physics - ExperimentNeutronNeutron induced nuclear reactions010306 general physicsNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutrons:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capture13. Climate actionNeutron sourceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]NucleosynthesisNucleosíntesi
researchProduct

The Szilard–Chalmers effect in macrocyclic ligands to increase the specific activity of reactor-produced radiolanthanides: Experiments and explanatio…

2012

Abstract Successful utilization of medical isotopes in the radiolabeling reactions to a significant degree depends on the technically achievable specific activity. In this respect, the Szilard-Chalmers effect is considered in detail as a radiochemical tool to increase the specific activity of radionuclides produced by direct nuclear reactions. In the present study, a physico-chemical model is described utilizing the specific aspects of thermodynamically and kinetically stabilised metal-ligand complexes. The approach is applied as a proofof- principle study to increase the specific activity of 166Ho, produced via the (n, γ) nuclear reaction. As a target material, 165Ho-DOTA is used. In this …

Nuclear reactionNeutron captureIsotopeChemistrylawRadiochemistryCationic polymerizationSpecific activityIrradiationPhysical and Theoretical ChemistryNuclear reactorTRIGAlaw.inventionRadiochimica Acta
researchProduct

Experimental Neutron Capture Rate Constraint Far from Stability

2016

Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutro…

Nuclear reactionPhysics010308 nuclear & particles physicsStable isotope ratioAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and Astronomy7. Clean energy01 natural sciencesStability (probability)Nuclear physicsNeutron captureOrders of magnitude (time)13. Climate actionValley of stabilityNucleosynthesis0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Levels of two-particle and gamma bands in 192 Ir

2015

Abstract Level scheme of the transitional doubly odd nucleus 192 Ir is analysed in detail up to about 530 keV energy using earlier published experimental data of neutron capture and particle transfer reactions. A number of new levels are proposed. Obtained 192 Ir level scheme is interpreted in terms of particle-plus-rotor coupling model. It is shown that the long-lived 241 year isomer of 192 Ir has spin-parity 11 − , just like the analogous states in neighbouring 190,194 Ir.

Nuclear reactionPhysicsCouplingNuclear and High Energy PhysicsNeutron capturemedicine.anatomical_structureParticle transferIsotopeExcited statemedicineParticleAtomic physicsNucleusNuclear Physics A
researchProduct

Nuclear structure of 131Te studied with (n,γ) and reactions

2003

Abstract The structure of 131 Te has been investigated with the 130 Te( n , γγ ) 131 Te reaction using thermal neutrons and with the 130 Te( d , p ) 131 Te reaction using polarized deuterons with energy E d =18 MeV. About 290 levels were identified in most cases including spin, parity and γ -decay. The γ -decay scheme after neutron capture is essentially complete containing about 100% of the decay of the capture state and about 100% of the population of the 11/2 − isomer and of the ground state. The scheme includes 42 primary transitions with energies between 750 keV and 2500 keV. The experimental level scheme is compared with predictions of the Interacting Boson–Fermion model (IBFM) and of…

Nuclear reactionPhysicsNuclear and High Energy PhysicsNeutron captureDecay schemeDeuteriumAstrophysics::High Energy Astrophysical PhenomenaBinding energyNeutronAtomic physicsNuclear ExperimentGround stateNeutron temperatureNuclear Physics A
researchProduct

Nuclear structure of 127Te studied with (n,γ) and (d→,p) reactions and interpreted with IBFM and QPM

2005

Abstract The nuclear structure of 127Te has been investigated with the Te 126 ( n , γ γ ) Te 127 reaction using thermal neutrons and with the Te 126 ( d → , p ) Te 127 reaction at E d = 20 MeV . About 190 levels were identified in a region to 4.1 MeV excitation energy, in most cases including spin, parity and γ-decay. The γ-decay scheme after neutron capture is essentially complete containing about 100% of the population of the 11 / 2 − isomer and of the ground state. The thermal neutron capture cross section and isomer production of the 11 / 2 − state at 88.3 keV were determined to be 0.44(6) b and 0.069(10) b, respectively. The neutron binding energy was determined to be 6287.6(1) keV. A …

Nuclear reactionPhysicsNuclear and High Energy Physicseducation.field_of_studyNeutron capturePopulationBinding energyNuclear structureNeutronAtomic physicseducationGround stateNeutron temperatureNuclear Physics A
researchProduct

ANDES Measurements for Advanced Reactor Systems

2013

Abstract A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23 Na, Mo, Zr, and 238 U, neutron capture cross sections of 238 U, 241 Am, neutron induced fission cross sections of 240 Pu, 242 Pu, 241 Am, 243 Am and 245 Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238 Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am…

Nuclear reactionPhysicsNuclear and High Energy Physicsta114FissionNuclear dataFission product yieldInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energyNuclear physicsNeutron captureNeutronNuclear ExperimentDelayed neutron
researchProduct

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

2017

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

Nuclear reactionnTOFNeutron therapyQC1-999chemistry.chemical_elementNeutron01 natural sciencesResonance (particle physics)Nuclear physicsCross section (physics)Physics and Astronomy (all)0103 physical sciencesCERNNeutronddc:530010306 general physicsBoronPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Range (particle radiation)Large Hadron Collidercross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capturechemistryNuclear reactions
researchProduct

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

2016

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

Nuclear reactionnTOFQC1-999Nuclear engineeringContext (language use)CERN nTOFNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - ExperimentNeutronddc:530242Pu neutron capture010306 general physicsMOX fuelNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fissile materialCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionSpent nuclear fuelNeutron temperature13. Climate actionneutron time-of-flight measurement
researchProduct

Radiative neutron capture on 242Pu in the resonance region at the CERN n_TOF-EAR1 facility

2018

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of 242Pu there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…

PRIRODNE ZNANOSTI. Fizika.neutron capture 242Pu resonance analysis n_TOFresonance analysisn_TOF242PuNATURAL SCIENCES. Physics.neutron capture
researchProduct