Search results for "Neutrons"
showing 10 items of 152 documents
A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI
2021
It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …
Characterization of a neutron-beta counting system with beta-delayed neutron emitters
2016
Abstract A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β–neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on …
Constraining interactions mediated by axion-like particles with ultracold neutrons
2015
We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…
Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments
2017
We report the study of a radiation resistant single mode optical fiber doped with fluorine exposed to mixed neutron and $\gamma $ -radiation up to $10^{17}$ n/cm2 fluence and >2 MGy dose to evaluate its performances when used as the sensing element of a distributed Optical Frequency Domain Reflectometry (OFDR). The use of complementary spectroscopic techniques highlights some differences between the responses of solely $\gamma $ -radiation (10 MGy) or mixed neutron and $\gamma $ ( $10^{17}$ n/cm $^{2}+>2$ MGy) irradiated samples. Those differences are linked to the defect generation rather than to structural changes of the ${a}$ -SiO2 host matrix. We show that a modification of the refracti…
Constraint on the coupling of axionlike particles to matter via ultracold neutron gravitational experiment
2006
We present a new constraint for the axion monopole-dipole coupling in the range of 1 micrometer to a few millimeters, previously unavailable for experimental study. The constraint was obtained using our recent results on the observation of neutron quantum states in the Earth's gravitational field. We exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest gravitational states above a material surface to any additional interaction between the UCN and the matter, if the characteristic interaction range is within the mentioned domain. In particular, we find that the upper limit for the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15} for the ax…
Isospin-symmetry breaking in masses of ≃ Nuclei
2018
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…
First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements
2015
In this work we explore for the first time the applicability of using $\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a $^{197}$Au sample have been carried out at n_TOF, achieving an enhancement of a factor…
First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons
2017
The double-polarization observable $E$ and the helicity-dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$ have been measured for the first time for single $\pi^{0}$ photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the $\pi^0$ meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the $\pi^{0}N$ final state. A comparison to data mea…
A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron
2015
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\mathrm{n} = -0.21 \pm 1.82 \times10^{-26}$ $e$cm, which may be inter…
Gravitational depolarization of ultracold neutrons : comparison with data
2015
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.