6533b7d3fe1ef96bd1260ab4

RESEARCH PRODUCT

Isospin-symmetry breaking in masses of ≃ Nuclei

Pawel BaczykM. KonieczkaWojciech SatulaWojciech SatulaJacek DobaczewskiKoichi SatoTakashi Nakatsukasa

subject

Nuclear and High Energy PhysicsParticle physicsprotonitNuclear TheoryTriplet displacement energy (TDE)01 natural sciencesComputer Science::Digital LibrariesDisplacement (vector)Energy density functional (EDF)Proton–neutron mixingproton–neutron mixingnuclear physicstiheysmirror displacement energy (MDE)0103 physical sciencesCoulombSymmetry breaking010306 general physicsnuclear density functional theory (DFT)density functional theoryLine (formation)Physicsdensityenergiata114protons010308 nuclear & particles physicsScatteringtiheysfunktionaaliteorianeutronsneutronitenergy density functional (EDF)lcsh:QC1-999Symmetry (physics)Isospin symmetry breaking (ISB)Isospintriplet displacement energy (TDE)isospin symmetry breaking (ISB)ydinfysiikkaMirror displacement energy (MDE)Parametrizationlcsh:Physicsenergy

description

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.

10.1016/j.physletb.2017.12.068http://repo.scoap3.org/api