0000000000020816
AUTHOR
M. Konieczka
Strong-interaction Isospin-symmetry Breaking Within the Density Functional Theory
The conventional Skyrme interaction is generalized by adding zero-range charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the extended model accounts for experimental values of mirror and triplet displacement energies (MDEs and TDEs) in sd-shell isospin triplets with, on average, about 100~keV precision using only two additional adjustable coupling constants. Moreover, the model is able to reproduce, for the first time, the A=4n versus A=4n+2 staggering of the TDEs.
Isospin-symmetry breaking in masses of ≃ Nuclei
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
[Background] Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multi-reference level allows for restoring symmetries and, in turn, for calculating transition rates. [Purpose] We propose a new no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. [Metho…
Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (v3.06h) : a new version of the program
We describe the new version (v3.06h) of the code HFODD that solves the universal nonrelativistic nuclear DFT Hartree-Fock or Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we implemented the following new features: (i) zero-range three- and four-body central terms, (ii) zero-range three-body gradient terms, (iii) zero-range tensor terms, (iv) zero-range isospin-breaking terms, (v) finite-range higher-order regularized terms, (vi) finite-range separable terms, (vii) zero-range two-body pairing terms, (viii) multi-quasiparticle blocking, (ix) Pfaffian overlaps, (x) particle-number and parity symmetry restoration, (xi) axializatio…
Isobaric multiplet mass equation within nuclear density functional theory
We extend the nuclear Density Functional Theory (DFT) by including proton-neutron mixing and contact isospin-symmetry-breaking (ISB) terms up to next-to-leading order (NLO). Within this formalism, we perform systematic study of the nuclear mirror and triple displacement energies, or equivalently of the Isobaric Multiplet Mass Equation (IMME) coefficients. By comparing results with those obtained within the existing Green Function Monte Carlo (GFMC) calculations, we address the fundamental question of the physical origin of the ISB effects. This we achieve by analyzing separate contributions to IMME coefficients coming from the electromagnetic and nuclear ISB terms. We show that the ISB DFT …
Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of the program
We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…
Isospin mixing within the multi-reference nuclear density functional theory and beyond - selected aspects
The results of systematic calculations of isospin-symmetry-breaking corrections to superallowed beta-decays based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT) are reviewed with an emphasis on theoretical uncertainties of the model. Extensions of the formalism towards no core shell model approach with basis cutoff scheme dictated by the self-consistent particle-hole DFT solutions will be also discussed.
Gamow-Teller response in the configuration space of a density-functional-theory–rooted no-core configuration-interaction model
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics.Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational sy…
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…
Isospin Mixing Within the Symmetry Restored Density Functional Theory and Beyond
We present results of systematic calculations of the isospin-symmetry-breaking corrections to the superallowed I=$0+,T=1 --> I=0+,T=1 beta-decays, based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT). We discuss theoretical uncertainties of the formalism related to the basis truncation, parametrization of the underlying energy density functional, and ambiguities related to determination of Slater determinants in odd-odd nuclei. A generalization of the double-projected DFT model towards a no core shell-model-like configuration-mixing approach is formulated and implemented. We also discuss new opportunities in charge-symmetry- and cha…
Mirror and triplet displacement energies within nuclear DFT: : numerical stability
Isospin-symmetry-violating class II and III contact terms are introduced into the Skyrme energy density functional to account for charge dependence of the strong nuclear interaction. The two new coupling constants are adjusted to available experimental data on triplet and mirror displacement energies, respectively. We present preliminary results of the fit, focusing on its numerical stability with respect to the basis size.