Search results for "Nilpotent"

showing 10 items of 119 documents

On the product of a nilpotent group and a group with non-trivial center

2007

Abstract It is proved that a finite group G = A B which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.

Normal subgroupDiscrete mathematicsComplement (group theory)Algebra and Number TheorySoluble groupMetabelian groupCommutator subgroupCentral seriesFitting subgroupProduct of groupsCombinatoricsMathematics::Group TheorySolvable groupFactorized groupCharacteristic subgroupNilpotent groupMathematicsJournal of Algebra
researchProduct

A Characterization of the Class of Finite Groups with Nilpotent Derived Subgroup

2002

The class of all finite groups with nilpotent commutator subgroup is characterized as the largest subgroup-closed saturated formation 𝔉 for which the 𝔉-residual of a group generated by two 𝔉-subnormal subgroups is the subgroup generated by their 𝔉–residuals.

Normal subgroupDiscrete mathematicsMathematics::Group TheoryPure mathematicsMaximal subgroupGeneral MathematicsCommutator subgroupOmega and agemo subgroupNilpotent groupCharacteristic subgroupCentral seriesFitting subgroupMathematicsMathematische Nachrichten
researchProduct

On finite groups generated by strongly cosubnormal subgroups

2003

[EN] Two subgroups A and B of a group G are cosubnormal if A and B are subnormal in their join and are strongly cosubnormal if every subgroup of A is cosubnormal with every subgroup of B. We find necessary and sufficient conditions for A and B to be strongly cosubnormal in and, if Z is the hypercentre of G=, we show that A and B are strongly cosubnormal if and only if G/Z is the direct product of AZ/Z and BZ/Z. We also show that projectors and residuals for certain formations can easily be constructed in such a group. Two subgroups A and B of a group G are N-connected if every cyclic subgroup of A is cosubnormal with every cyclic subgroup of B (N denotes the class of nilpotent groups). Thou…

Normal subgroupFinite groupHypercentreAlgebra and Number TheoryStrongly cosubnormal subgroupsFormationN-connected subgroupsFitting subgroupCombinatoricsSubnormal subgroupSubgroupLocally finite groupCharacteristic subgroupIndex of a subgroupFinite groupMATEMATICA APLICADAMatemàticaSubnormal subgroupMathematicsNilpotent group
researchProduct

Two-step nilpotent Leibniz algebras

2022

In this paper we give a complete classification of two-step nilpotent Leibniz algebras in terms of Kronecker modules associated with pairs of bilinear forms. In particular, we describe the complex and the real case of the indecomposable Heisenberg Leibniz algebras as a generalization of the classical $(2n+1)-$dimensional Heisenberg Lie algebra $\mathfrak{h}_{2n+1}$. Then we use the Leibniz algebras - Lie local racks correspondence proposed by S. Covez to show that nilpotent real Leibniz algebras have always a global integration. As an application, we integrate the indecomposable nilpotent real Leibniz algebras with one-dimensional commutator ideal. We also show that every Lie quandle integr…

Numerical AnalysisAlgebra and Number Theory17A32 22A30 20M99Mathematics::History and OverviewMathematics::Rings and AlgebrasMathematics - Rings and AlgebrasSettore MAT/02 - AlgebraRings and Algebras (math.RA)Coquegigrue problemFOS: MathematicsDiscrete Mathematics and CombinatoricsNilpotent Leibniz algebrasGeometry and TopologySettore MAT/03 - GeometriaLeibniz algebrasLie racks
researchProduct

Partial isometries and the conjecture of C.K. Fong and S.K. Tsui

2016

Abstract We investigate some bounded linear operators T on a Hilbert space which satisfy the condition | T | ≤ | Re T | . We describe the maximum invariant subspace for a contraction T on which T is a partial isometry to obtain that, in certain cases, the above condition ensures that T is self-adjoint. In other words we show that the Fong–Tsui conjecture holds for partial isometries, contractive quasi-isometries, or 2-quasi-isometries, and Brownian isometries of positive covariance, or even for a more general class of operators.

Partial isometryConjectureApplied Mathematics010102 general mathematicsInvariant subspaceHilbert space010103 numerical & computational mathematics01 natural sciencesCombinatoricssymbols.namesakeNilpotent operatorQuasi-isometryBounded functionsymbolsMathematics::Metric Geometry0101 mathematicsContraction (operator theory)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Linear Methods in Nilpotent Groups

1982

The subject of this chapter is commutator calculation. It will be recalled that the commutator [x, y] of two elements x, y of a group is defined by the relation $$ [x,y] = {{x}^{{ - 1}}}{{y}^{{ - 1}}}xy. $$ . We then have $$ [xy,z] = {{[x,z]}^{y}}[y,z],\quad [x,yz] = [x,z]{{[x,y]}^{z}}. $$ . These relations are rather similar to the conditions for bilinearity of forms, and there are a number of ways of formalizing this similarity. Once this is done, commutator calculations can be done by linear methods. Several examples of theorems proved by this method will be given in this chapter.

PhysicsDiscrete mathematicsNilpotentGroup (mathematics)lawAssociative algebraCommutator (electric)UnipotentNilpotent groupCentral seriesLinear methodslaw.invention
researchProduct

Lie properties of symmetric elements in group rings

2009

Abstract Let ∗ be an involution of a group G extended linearly to the group algebra KG . We prove that if G contains no 2-elements and K is a field of characteristic p ≠ 2 , then the ∗-symmetric elements of KG are Lie nilpotent (Lie n -Engel) if and only if KG is Lie nilpotent (Lie n -Engel).

Pure mathematicsAdjoint representation010103 numerical & computational mathematicsCentral series01 natural sciencesGraded Lie algebraMathematics::Group TheoryRepresentation of a Lie groupGroup ring LieLie nilpotentGroup algebra0101 mathematicsMathematics::Representation TheoryMathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie groupTEORIA DOS GRUPOSMathematics::Rings and Algebras010102 general mathematicsLie conformal algebraAdjoint representation of a Lie algebraLie n-EngelNilpotent groupSymmetric element
researchProduct

A note on the Schur multiplier of a nilpotent Lie algebra

2011

For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.

Pure mathematicsAlgebra and Number TheoryDimension (graph theory)Schur multiplier nilpotent Lie algebrasMathematics - Rings and AlgebrasUpper and lower boundsNilpotent Lie algebraSettore MAT/02 - Algebra17B30 17B60 17B99Rings and Algebras (math.RA)Lie algebraFOS: MathematicsSettore MAT/03 - GeometriaAlgebra over a fieldAbelian groupMathematicsSchur multiplier
researchProduct

Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems

2015

In this paper we introduce new methods to prove the finite cyclicity of some graphics through a triple nilpotent point of saddle or elliptic type surrounding a center. After applying a blow-up of the family, yielding a singular 3-dimensional foliation, this amounts to proving the finite cyclicity of a family of limit periodic sets of the foliation. The boundary limit periodic sets of these families were the most challenging, but the new methods are quite general for treating such graphics. We apply these techniques to prove the finite cyclicity of the graphic $(I_{14}^1)$, which is part of the program started in 1994 by Dumortier, Roussarie and Rousseau (and called DRR program) to show that…

Pure mathematicsCenter (category theory)Boundary (topology)Dynamical Systems (math.DS)Type (model theory)FoliationNilpotentMathematics (miscellaneous)FOS: MathematicsLimit (mathematics)Point at infinityMathematics - Dynamical Systems34C07 37G15SaddleMathematicsTransactions of the Moscow Mathematical Society
researchProduct

Irreducible induction and nilpotent subgroups in finite groups

2019

Suppose that $G$ is a finite group and $H$ is a nilpotent subgroup of $G$. If a character of $H$ induces an irreducible character of $G$, then the generalized Fitting subgroup of $G$ is nilpotent.

Pure mathematicsFinite groupAlgebra and Number Theory010102 general mathematicsMathematics::Rings and Algebras01 natural sciencesFitting subgroupNilpotentMathematics::Group TheoryCharacter (mathematics)Simple group0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Mathematics::Representation TheoryMathematics - Representation Theory20C15 20C33 (primary) 20B05 20B33 (secondary)Mathematics
researchProduct