Search results for "Nilpotent"
showing 10 items of 119 documents
On the product of a nilpotent group and a group with non-trivial center
2007
Abstract It is proved that a finite group G = A B which is a product of a nilpotent subgroup A and a subgroup B with non-trivial center contains a non-trivial abelian normal subgroup.
A Characterization of the Class of Finite Groups with Nilpotent Derived Subgroup
2002
The class of all finite groups with nilpotent commutator subgroup is characterized as the largest subgroup-closed saturated formation 𝔉 for which the 𝔉-residual of a group generated by two 𝔉-subnormal subgroups is the subgroup generated by their 𝔉–residuals.
On finite groups generated by strongly cosubnormal subgroups
2003
[EN] Two subgroups A and B of a group G are cosubnormal if A and B are subnormal in their join and are strongly cosubnormal if every subgroup of A is cosubnormal with every subgroup of B. We find necessary and sufficient conditions for A and B to be strongly cosubnormal in and, if Z is the hypercentre of G=, we show that A and B are strongly cosubnormal if and only if G/Z is the direct product of AZ/Z and BZ/Z. We also show that projectors and residuals for certain formations can easily be constructed in such a group. Two subgroups A and B of a group G are N-connected if every cyclic subgroup of A is cosubnormal with every cyclic subgroup of B (N denotes the class of nilpotent groups). Thou…
Two-step nilpotent Leibniz algebras
2022
In this paper we give a complete classification of two-step nilpotent Leibniz algebras in terms of Kronecker modules associated with pairs of bilinear forms. In particular, we describe the complex and the real case of the indecomposable Heisenberg Leibniz algebras as a generalization of the classical $(2n+1)-$dimensional Heisenberg Lie algebra $\mathfrak{h}_{2n+1}$. Then we use the Leibniz algebras - Lie local racks correspondence proposed by S. Covez to show that nilpotent real Leibniz algebras have always a global integration. As an application, we integrate the indecomposable nilpotent real Leibniz algebras with one-dimensional commutator ideal. We also show that every Lie quandle integr…
Partial isometries and the conjecture of C.K. Fong and S.K. Tsui
2016
Abstract We investigate some bounded linear operators T on a Hilbert space which satisfy the condition | T | ≤ | Re T | . We describe the maximum invariant subspace for a contraction T on which T is a partial isometry to obtain that, in certain cases, the above condition ensures that T is self-adjoint. In other words we show that the Fong–Tsui conjecture holds for partial isometries, contractive quasi-isometries, or 2-quasi-isometries, and Brownian isometries of positive covariance, or even for a more general class of operators.
Linear Methods in Nilpotent Groups
1982
The subject of this chapter is commutator calculation. It will be recalled that the commutator [x, y] of two elements x, y of a group is defined by the relation $$ [x,y] = {{x}^{{ - 1}}}{{y}^{{ - 1}}}xy. $$ . We then have $$ [xy,z] = {{[x,z]}^{y}}[y,z],\quad [x,yz] = [x,z]{{[x,y]}^{z}}. $$ . These relations are rather similar to the conditions for bilinearity of forms, and there are a number of ways of formalizing this similarity. Once this is done, commutator calculations can be done by linear methods. Several examples of theorems proved by this method will be given in this chapter.
Lie properties of symmetric elements in group rings
2009
Abstract Let ∗ be an involution of a group G extended linearly to the group algebra KG . We prove that if G contains no 2-elements and K is a field of characteristic p ≠ 2 , then the ∗-symmetric elements of KG are Lie nilpotent (Lie n -Engel) if and only if KG is Lie nilpotent (Lie n -Engel).
A note on the Schur multiplier of a nilpotent Lie algebra
2011
For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.
Finite cyclicity of some center graphics through a nilpotent point inside quadratic systems
2015
In this paper we introduce new methods to prove the finite cyclicity of some graphics through a triple nilpotent point of saddle or elliptic type surrounding a center. After applying a blow-up of the family, yielding a singular 3-dimensional foliation, this amounts to proving the finite cyclicity of a family of limit periodic sets of the foliation. The boundary limit periodic sets of these families were the most challenging, but the new methods are quite general for treating such graphics. We apply these techniques to prove the finite cyclicity of the graphic $(I_{14}^1)$, which is part of the program started in 1994 by Dumortier, Roussarie and Rousseau (and called DRR program) to show that…
Irreducible induction and nilpotent subgroups in finite groups
2019
Suppose that $G$ is a finite group and $H$ is a nilpotent subgroup of $G$. If a character of $H$ induces an irreducible character of $G$, then the generalized Fitting subgroup of $G$ is nilpotent.