6533b860fe1ef96bd12c3add
RESEARCH PRODUCT
Lie properties of symmetric elements in group rings
Antonino GiambrunoPolcino MiliesSudarshan K. Sehgalsubject
Pure mathematicsAdjoint representation010103 numerical & computational mathematicsCentral series01 natural sciencesGraded Lie algebraMathematics::Group TheoryRepresentation of a Lie groupGroup ring LieLie nilpotentGroup algebra0101 mathematicsMathematics::Representation TheoryMathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie groupTEORIA DOS GRUPOSMathematics::Rings and Algebras010102 general mathematicsLie conformal algebraAdjoint representation of a Lie algebraLie n-EngelNilpotent groupSymmetric elementdescription
Abstract Let ∗ be an involution of a group G extended linearly to the group algebra KG . We prove that if G contains no 2-elements and K is a field of characteristic p ≠ 2 , then the ∗-symmetric elements of KG are Lie nilpotent (Lie n -Engel) if and only if KG is Lie nilpotent (Lie n -Engel).
year | journal | country | edition | language |
---|---|---|---|---|
2009-02-01 |