6533b860fe1ef96bd12c3add

RESEARCH PRODUCT

Lie properties of symmetric elements in group rings

Antonino GiambrunoPolcino MiliesSudarshan K. Sehgal

subject

Pure mathematicsAdjoint representation010103 numerical & computational mathematicsCentral series01 natural sciencesGraded Lie algebraMathematics::Group TheoryRepresentation of a Lie groupGroup ring LieLie nilpotentGroup algebra0101 mathematicsMathematics::Representation TheoryMathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie groupTEORIA DOS GRUPOSMathematics::Rings and Algebras010102 general mathematicsLie conformal algebraAdjoint representation of a Lie algebraLie n-EngelNilpotent groupSymmetric element

description

Abstract Let ∗ be an involution of a group G extended linearly to the group algebra KG . We prove that if G contains no 2-elements and K is a field of characteristic p ≠ 2 , then the ∗-symmetric elements of KG are Lie nilpotent (Lie n -Engel) if and only if KG is Lie nilpotent (Lie n -Engel).

10.1016/j.jalgebra.2008.09.041