0000000000626129
AUTHOR
Polcino Milies
Group identities on symmetric units
Abstract Let F be an infinite field of characteristic different from 2, G a group and ∗ an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the ∗-symmetric units of FG satisfy a group identity. When ∗ is the classical involution induced from g → g − 1 , g ∈ G , this result was obtained in [A. Giambruno, S.K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443–461].
Group algebras and Lie nilpotence
Abstract Let ⁎ be an involution of a group algebra FG induced by an involution of the group G. For char F ≠ 2 , we classify the groups G with no 2-elements and with no nonabelian dihedral groups involved whose Lie algebra of ⁎-skew elements is nilpotent.
Lie properties of symmetric elements in group rings
Abstract Let ∗ be an involution of a group G extended linearly to the group algebra KG . We prove that if G contains no 2-elements and K is a field of characteristic p ≠ 2 , then the ∗-symmetric elements of KG are Lie nilpotent (Lie n -Engel) if and only if KG is Lie nilpotent (Lie n -Engel).