6533b853fe1ef96bd12ad78b
RESEARCH PRODUCT
Group algebras and Lie nilpotence
Polcino MiliesAntonino GiambrunoSudarshan K. Sehgalsubject
Discrete mathematicsPure mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematicsMathematics::Rings and AlgebrasUniversal enveloping algebra0102 computer and information sciencesGroup algebraSkew-symmetric element01 natural sciencesRepresentation theoryLie conformal algebraGraded Lie algebraRepresentation of a Lie groupgroup algebra unit010201 computation theory & mathematicsLie nilpotentGroup algebra0101 mathematicsNilpotent groupANÉIS E ÁLGEBRAS ASSOCIATIVOSMathematicsdescription
Abstract Let ⁎ be an involution of a group algebra FG induced by an involution of the group G. For char F ≠ 2 , we classify the groups G with no 2-elements and with no nonabelian dihedral groups involved whose Lie algebra of ⁎-skew elements is nilpotent.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 | Journal of Algebra |