Search results for "Nitrosomonas"

showing 2 items of 2 documents

HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen

2013

From Soil to Sky Trace gases emitted either through the activity of microbial communities or from abiotic reactions in the soil influence atmospheric chemistry. In laboratory column experiments using several soil types, Oswald et al. (p. 1233 ) showed that soils from arid regions and farmlands can produce substantial quantities of nitric oxide (NO) and nitrous acid (HONO). Ammonia-oxidizing bacteria are the primary source of HONO at comparable levels to NO, thus serving as an important source of reactive nitrogen to the atmosphere.

Biogeochemical cycle010504 meteorology & atmospheric sciencesReactive nitrogenNitrogenNitrosomonas europaeaNitrous Acid010501 environmental sciencesNO EMISSIONSNITRIFICATION01 natural sciencescomplex mixturesWATER CONTENTchemistry.chemical_compoundAmmoniaDEPENDENCENitrogen FixationEMPIRICAL-MODELNitriteNitrogen cycleTEMPERATURESoil Microbiology0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Nitrous acidMultidisciplinaryNITRIC-OXIDEAtmosphereChemistryDENITRIFICATIONRAIN-FORESTReactive Nitrogen SpeciesSOUTH-AFRICA13. Climate actionEnvironmental chemistrySoil waterNitrogen fixationOxidation-ReductionSoil microbiology
researchProduct

Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

2010

A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH 3 -N l −1 . The half saturation constant for free ammonia was determined (K NH 3 = 0.32 mg NH 3 -N l −1 ). Activity decreased at TAN (total ammonium–nitrogen) concentration over 2,000 mg NH 4 -N l −1 . No free ammonia inhibition was detected. The effect of salinity was studied by adding…

SalinityEnvironmental EngineeringNitrogenNitrosomonas europaeaWaste Disposal Fluidchemistry.chemical_compoundAmmoniaBioreactorsAmmoniaNitrosomonas europaeaBioreactorNitriteNitrosomonasNitrogen cycleIn Situ Hybridization FluorescenceNitritesWater Science and TechnologybiologyBacteriaChemistryEnvironmental engineeringbiology.organism_classificationAerobiosisSalinityQuaternary Ammonium CompoundsKineticsEnvironmental chemistryNitrificationWaste disposalWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct