Search results for "Nolay"
showing 10 items of 588 documents
Experimental and theoretical evidence for substitutional molybdenum atoms in theTiO2(110)subsurface
2006
Molybdenum was deposited at room temperature on the ${\mathrm{TiO}}_{2}(110)$ surface in the 0--1.3 equivalent monolayer (eqML) range and was then annealed at $400\phantom{\rule{0.2em}{0ex}}\ifmmode^\circ\else\textdegree\fi{}\mathrm{C}$ in order to reach a kind of equilibrium state. A threshold was found in the behavior of the deposit: below 0.2 eqML, substitutional molybdenum occurs in titanium sites located under the bridging oxygen atoms of the ${\mathrm{TiO}}_{2}(110)$ surface. In this position, molybdenum atoms are in a structural and chemical ${\mathrm{MoO}}_{2}$-like environment. Density-functional theory calculations show that this molybdenum site is actually the most stable one in …
Characterizing the Glassy Phase of a Statistical Copolymer Monolayer
1999
Monolayers of a statistical copolymer with a poly(methacrylate) chain and hydrophilic and hydrophobic side groups are investigated at the air/water interface. The isotherms suggest a fluid and a frozen phase. With in-situ X-ray reflectivity the monolayer thickness is determined to be 2.5 nm or less. The shear viscosity in the fluid phase is extremely high yet can be described in the framework of the free area model. However, the parameter which characterizes the overlap of holes available for a diffusing monomer unit is a factor of 2 higher than expected, suggesting local diffusion barriers formed by nanosized clusters. In the glassy phase single-molecule fluorescence shows anomalous diffus…
Sharing of Na+ by Three −COO– Groups at Deprotonated Carboxyl-Terminated Self-Assembled Monolayer-Charged Aqueous Interface
2018
By combining theoretical calculations and experimental observations, we show that Na+ can be shared by three charged −COO– groups of the deprotonated carboxyl-terminated self-assembled monolayers i...
An insight into the functionalisation of carbon nanotubes by diazonium chemistry: Towards a controlled decoration
2014
The derivatisation of materials including iron, gold, and carbon by addition of diazonium salts is a reliable process to tune their interfacial interaction with the surrounding media. In this regard, the functionalisation of carbon nanostructures by diazonium chemistry is a versatile strategy to obtain soluble nanomaterials with degrees of functionalisation among the highest ever reported. Starting from these premises we have studied the functionalisation of multi-walled carbon nanotubes by addition of the aryl diazonium salts generated in situ by treatment of 4-methoxyaniline with isopentylnitrite. Following a thorough purification and characterisation protocol (UV-vis, TGA, ATR-IR, cyclic…
Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study
2019
The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from [Formula: see text]-K indirect in isolated monolayer to [Formula: see text]-[Formula: see text] direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, w…
Novel 2D boron nitride with optimal direct band gap: A theoretical prediction
2022
Abstract A novel structurally stable 2D-boron nitride material, namely di-BN, is predicted by means of the first-principles simulations. This monolayer BN system is composed of the azo (N-N) and diboron (B-B) groups. Its in-plane stiffness is close to the monolayer h-BN. Usually, the boron nitride materials are semiconductors with large band gaps. However, the monolayer di-BN possesses a moderate direct band gap of 1.622 eV obtained from our HSE06 calculation. Although the GW correction enlarges the band gap to 2.446 eV, this value is still in the range of the visible light. The detailed investigation of its band arrangement reveals that this material is able to product hydrogen molecules i…
A comparative study of Ag and Cu adhesion on an MgO(001) surface
2004
Abstract Ab initio calculations were performed on 2D slab models of copper and silver adhesion on a perfect MgO(001) surface using density functional theory (DFT) combined with the localized atomic wave functions, as implemented in both CRYSTAL-98 and CRYSTAL-03 computer codes. To clarify the nature of the interfacial bonding, we consider slab models of the Ag/MgO(001) and Cu/MgO(001) interfaces with six different substrate coverages, varied from 1 4 monolayer (ML) up to 2 ML. The dependence of several key interface properties on the substrate coverage is analyzed. For all coverages, the most favorable sites for the adsorption of metal atoms are found to be above the surface O 2− ions, wher…
Reconstitution of a protein monolayer on thiolates functionalized gaas surface
2012
International audience; In the aim to realize an efficient resonant biosensor, gallium arsenide (GaAs) presents many advantages. In addition to its properties of transduction, GaAs is a crystal for which microfabrication processes were developed, conferring the possibility to miniaturize the device and integrate electronic circuit. Moreover, the biofunctionalization could be realized on the crystalline surface without layer deposition, constituting a real advantage to perform reusable sensor. The functionalization of GaAs surface was engaged in order to immobilize a protein monolayer on this substrate. Functionalization was done using a mixed self assembled monolayer of thiolate molecules. …
Complexes of an anionic poly(p-phenylene) polyelectrolyte and dioctadecylammonium bromide at the air–water interface
1999
Abstract By spreading dioctadecyldimethylammonium bromide on a subphase containing rigid rod-like anionic poly( p -phenylene) sulfonate, a complex monolayer is formed in situ at the air–water interface. Complexation results in an increase of the area per amphiphile molecule compared to the amphiphile on pure water. The change in structural order upon complexation and subsequent compression of the monolayer can be demonstrated employing UV/Vis spectroscopy: A red-shift of the polymer absorption band upon compression and a subsequent partial reversion of this shift after monolayer collapse can be observed. The peak shift is discussed to be a result of the electronic interaction of the π -syst…
Catenanes and threaded systems: from solution to surfaces
2009
Functional catenanes and threaded systems able to perform controllable mechanical motions are ideally suited for the design of molecular devices displaying mechanical, electronic, information or sensing functions. These systems have been extensively studied in solution phase and numerous examples of stimuli-driven molecular shuttles have been reported. However, for fully developing their potential applications, they must be interfaced with the macroscopic world. To achieve this objective, in the last few years catenanes and rotaxanes have been organized over surfaces in the form of chemisorbed monolayers or physisorbed monolayers, multilayers and thin films. This tutorial review summarizes …