6533b826fe1ef96bd1285308

RESEARCH PRODUCT

Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study

François M. PeetersJairo Arbey RodríguezRafael González-hernándezRafael González-hernándezWilliam López-pérezM V MilośevićAlvaro González-garcía

subject

Materials scienceBand gapPhysics::Optics02 engineering and technology01 natural scienceslaw.inventionGallium arsenidechemistry.chemical_compoundsymbols.namesakeCondensed Matter::Materials ScienceStrain engineeringlaw0103 physical sciencesMonolayerPhysics::Atomic and Molecular ClustersGeneral Materials Science010306 general physicsCondensed matter physicsGrapheneCondensed Matter::OtherBilayerPhysicsFermi level021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectchemistrysymbolsDirect and indirect band gaps0210 nano-technology

description

The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from [Formula: see text]-K indirect in isolated monolayer to [Formula: see text]-[Formula: see text] direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The [Formula: see text]-[Formula: see text] direct bandgap of GaAs remains unchanged in graphene/GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.

10.1088/1361-648x/ab0d70https://repository.uantwerpen.be/docman/irua/b49edb/160216_2019_10_23.pdf