0000000000143169

AUTHOR

François M. Peeters

Microscopic model for multiple flux transitions in mesoscopic superconducting loops

A microscopic model is constructed which is able to describe multiple magnetic flux transitions as observed in recent ultra-low temperature tunnel experiments on an aluminum superconducting ring with normal metal - insulator - superconductor junctions [Phys. Rev. B \textbf{70}, 064514 (2004)]. The unusual multiple flux quantum transitions are explained by the formation of metastable states with large vorticity. Essential in our description is the modification of the pairing potential and the superconducting density of states by a sub-critical value of the persistent current which modulates the measured tunnel current. We also speculate on the importance of the injected non-equilibrium quasi…

research product

Thermal rippling behavior of graphane

Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations $$ and the height-height correlation function $H(q)$ for different system sizes and temperatures we show that hydrogenated graphene is an un-rippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a $ H(q) $ tending to a constant in the long wavelength limit instead of showing the characteristic scaling law $ q^{4-\eta} (\eta \simeq 0.85)$ predicted by membrane theory. This unexpected behaviour persists up to temperatures of at least 900 K and is a consequence o…

research product

Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study

The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from [Formula: see text]-K indirect in isolated monolayer to [Formula: see text]-[Formula: see text] direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, w…

research product

Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study

First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a [Formula: see text]-[Formu…

research product

Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect

A shape-dependent superconducting resonance can be expected when an energy level associated with the transverse motion in a wire passes through the Fermi surface. We show that the recently observed width-dependent increase of ${T}_{c}$ in Al and Sn nanowires is a consequence of this shape-resonance effect.

research product

Spiral graphone and one sided fluorographene nano-ribbons

The instability of a free-standing one sided hydrogenated/fluorinated graphene nano-ribbon, i.e. graphone/fluorographene, is studied using ab-initio, semiempirical and large scale molecular dynamics simulations. Free standing semi-infinite arm-chair like hydrogenated/fluorinated graphene (AC-GO/AC-GF) and boat like hydrogenated/fluorinated graphene (B-GO/B-GF) (nano-ribbons which are periodic along the zig-zag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GO and B-GF are energetically more favorable than spiral AC-GO and AC-GF which is opposite to the double sided flat hydrogenated/fluorinated graphene, i.e. graphane/fluorographene…

research product