6533b824fe1ef96bd128003c
RESEARCH PRODUCT
Thermal rippling behavior of graphane
Mehdi Neek-amalMehdi Neek-amalJan H. LosFrançois M. PeetersS. CostamagnaS. Costamagnasubject
PhysicsCondensed Matter - Materials ScienceCondensed matter physicsLong wavelength limitGraphenePhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermal fluctuationsNanotechnologyBendingCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundMolecular geometrychemistryCorrelation functionlawThermalGraphanedescription
Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations $$ and the height-height correlation function $H(q)$ for different system sizes and temperatures we show that hydrogenated graphene is an un-rippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a $ H(q) $ tending to a constant in the long wavelength limit instead of showing the characteristic scaling law $ q^{4-\eta} (\eta \simeq 0.85)$ predicted by membrane theory. This unexpected behaviour persists up to temperatures of at least 900 K and is a consequence of the fact that in graphane the thermal energy can be accommodated by in-plane bending modes, i.e. modes involving C-C-C bond angles in the buckled carbon layer, instead of leading to significant out-of-plane fluctuations that occur in graphene.
year | journal | country | edition | language |
---|---|---|---|---|
2012-01-01 | Physical review : B : condensed matter and materials physics |