Search results for "Nonlinear dynamic"
showing 10 items of 158 documents
Linear and nonlinear optical properties of some organoxenon derivatives
2007
We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2…
Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.
2010
Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick d…
Linear inverse filtering improves spatial separation of nonlinear brain dynamics: a simulation study.
2000
We examined topographic variations in nonlinear measures based on scalp voltages, which were generated by two simulated current dipoles each placed in a different hemisphere of a spherical volume conductor (three-shell model). Dipole dynamics were that of a three-torus and the x-component of the Lorenz-system and scalp voltage were calculated for a configuration of 29 electrode positions. Although estimates for correlation dimension D2 and Lyapunov exponent L1 were close to the theoretical values for the original time series, the simulated scalp voltage data showed almost no topographic resolution of dipole positions. In order to enhance topographic differentiation, we constructed linear in…
Poiseuille flow of a Quincke suspension
2014
The controversy of models of dielectric particle suspensions with antisymmetric stress, which predict a nonphysical cusp of the velocity profile in plane Poiseuille flow under the action of the electrical field, is resolved. In the mean-field approximation, the nonlinear kinetic equation is derived for coupled due to the flow translational and rotational motion of the particles. By its numerical solution, it is shown that the velocity profile is smeared due to the translational diffusion of the particles with opposite directions of rotation. The obtained results for the velocity profiles and flow rates as a function of the electric field strength are in qualitative agreement with the existi…
Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
2008
We analyze the dynamics of the FitzHugh-Nagumo (FHN) model in the presence of colored noise and a periodic signal. Two cases are considered: (i) the dynamics of the membrane potential is affected by the noise, (ii) the slow dynamics of the recovery variable is subject to noise. We investigate the role of the colored noise on the neuron dynamics by the mean response time (MRT) of the neuron. We find meaningful modifications of the resonant activation (RA) and noise enhanced stability (NES) phenomena due to the correlation time of the noise. For strongly correlated noise we observe suppression of NES effect and persistence of RA phenomenon, with an efficiency enhancement of the neuronal respo…
Moment Equations for a Spatially Extended System of Two Competing Species
2005
The dynamics of a spatially extended system of two competing species in the presence of two noise sources is studied. A correlated dichotomous noise acts on the interaction parameter and a multiplicative white noise affects directly the dynamics of the two species. To describe the spatial distribution of the species we use a model based on Lotka-Volterra (LV) equations. By writing them in a mean field form, the corresponding moment equations for the species concentrations are obtained in Gaussian approximation. In this formalism the system dynamics is analyzed for different values of the multiplicative noise intensity. Finally by comparing these results with those obtained by direct simulat…
Improved Neural Networks with Random Weights for Short-Term Load Forecasting.
2015
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load…
Two-dimensional spectroscopy for the study of ion Coulomb crystals
2015
Ion Coulomb crystals are currently establishing themselves as a highly controllable test-bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals however remains an experimental challenge. In this work, we show how to extend the concepts of multi-dimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detec…
Attracteur de polarisation dans les fibres optiques
2004
Nous etudions la dynamique non lineaire des etats de polarisation de deux ondes coherentes ou incoherentes se propageant dans une fibre optique. Nous presentons en particulier un effet original d'attraction de la polarisation.
On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model
2018
International audience; We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real ex…