6533b85bfe1ef96bd12ba281

RESEARCH PRODUCT

On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model

Saverio MorfuMaxime Bordet

subject

PhysicsNumerical AnalysisQuantitative Biology::Neurons and CognitionApplied MathematicsPerturbation (astronomy)phase locking modesLow frequencyneural networks01 natural sciences010305 fluids & plasmasComputational physicsCorrelationNonlinear systemnonlinear dynamicsSine waveAmplitude[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Control theoryModeling and Simulation0103 physical sciencesVibrational resonance[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]010306 general physicsvibrational resonanceExcitation

description

International audience; We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real experiments that multiple resonances can be reached by an appropriate setting of the perturbation parameters. We clearly establish a correlation between these resonances and the encoding diagram of the low frequency signal free FitzHugh-Nagumo model. We show with realistic parameters that sharp transitions of the encoding diagram allow to predict the main resonances. Our experiments are confirmed by numerical simulations of the system response.

https://hal.archives-ouvertes.fr/hal-01569939