0000000000081142

AUTHOR

Maxime Bordet

Experimental and numerical study of noise effects in a FitzHugh-Nagumo system driven by a biharmonic signal

Using a nonlinear circuit ruled by the FitzHugh-Nagumo equations, we experimentally investigate the combined effect of noise and a biharmonic driving of respective high and low frequency F and f. Without noise, we show that the response of the circuit to the low frequency can be maximized for a critical amplitude B of the high frequency via the effect of Vibrational Resonance (V.R.). We report that under certain conditions on the biharmonic stimulus, white noise can induce V.R. The effects of colored noise on V.R. are also discussed by considering an Ornstein-Uhlenbeck process. All experimental results are confirmed by numerical analysis of the system response.

research product

A nonlinear electronic circuit mimicking the neuronal activity in presence of noise

We propose a nonlinear electronic circuit simulating the neuronal activity in a noisy environment. This electronic circuit is ruled by the set of Bonhaeffer-Van der Pol equations and is excited with a white gaussian noise, that is without external deterministic stimuli. Under these conditions, our circuits reveals the Coherence Resonance signature, that is an optimum of regularity in the system response for a given noise intensity.

research product

Encodage d'une information sinusoidale dans un circuit neuronal et résonances induites par une perturbation

Notre étude porte sur un circuit dont la tension obéit à un système d’équations correspondant à unmodèle de neurone. Nous analysons expérimentalement et en simulation numérique comment ce circuit neuronalencode un stimuli sinusoidal en train de potentiels d’action. Nous présentons un diagramme d’encodage où apparaissentdifférentes transitions selon la fréquence du stimuli. Nous montrons ensuite qu’une perturbation hautefréquence peut améliorer la détection d’un stimuli sinusoidal via le phénomène de Résonance Vibrationnelle. Eneffet, la perturbation peut induire des résonances qui coincident avec les transitions observées dans le diagrammed’encodage.

research product

Noise contribution to resonance phenomena and information propagation in non linear electronic networks

This manuscript presents research aiming to show possible positive effects of deterministic and stochastic perturbations on the responses of different nonlinear systems. To that end, both numerical and experimental studies were carried out on two kinds of structures : an elementary electronic FitzHugh-Nagumo oscillator and an electrical line developed by resistively coupling 45 elementary cells. In the first section, the elementary cell characterization was undertaken in a deterministic regime. In the presence of a bichromatic stimulus, it is shown that when the low frequency component is subthreshold, its detection can be maximized for an optimal magnitude of the second component thanks to…

research product

Ghost stochastic resonance in FitzHugh–Nagumo circuit

International audience; The response of a neural circuit submitted to a bi-chromatic stimulus and corrupted by noise is investigated. In the presence of noise, when the spike firing of the circuit is analysed, a frequency not present at the circuit input appears. For a given range of noise intensities, it is shown that this ghost frequency is almost exclusively present in the interspike interval distribution. This phenomenon is for the first time shown experimentally in a FitzHugh-Nagumo circuit.

research product

Experimental and numerical enhancement of Vibrational Resonance in a neural circuit

International audience; A neural circuit exactly ruled by the FitzHugh-Nagumo equations is excited by a biharmonic signal of frequencies f and F with respective amplitudes A and B. The magnitude spectrum of the circuit response is estimated at the low frequency driving f and presents a resonant behaviour versus the amplitude B of the high frequency. For the first time, it is shown experimentally that this Vibrational Resonance effect is much more pronounced when the two frequencies are multiple. This novel enhancement is also confirmed by numerical predictions. Applications of this nonlinear effect to the detection of weak stimuli are finally discussed.

research product

Impact of perturbations on the neuron response

International audience; We propose an overview of the effects of deterministic and stochastic perturbations on the response of a neuron. Our study is based on numerical simulations and experiments with an elementary neural circuit. We use different excitations to highlight various phenomena such as Mode locking, Vibrational Resonance, Ghost Stochastic Resonance... We close the study with a lattice of coupled circuit.

research product

Effet d’une perturbation haute fréquence sur la réponse du système de FitzHugh-Nagumo soumis à une excitation basse fréquence subliminale : simulation et expérimentation.

National audience; Dans cette communication, nous menons conjointement une étude en simulation numérique ainsi qu’une étude expérimentale de la réponse du système de FitzHugh-Nagumo soumis à une excitation bi-chromatique. Cette excitation est constituée d’un signal basse fréquence perturbé par une composante haute fréquence additive. Selon l’amplitude B de la perturbation haute fréquence, la réponse du système peut être optimisée à la basse fréquence. Un choix approprié du rapport des fréquences d’excitations peut conduire à une meilleure optimisation de la réponse du système.

research product

Noise effect in a FitzHugh-Nagumo circuit driven by a bichromatic signal

We analyze the response of a nonlinear circuit exactly ruled by the FitzHugh-Nagumo equations. This circuit is submitted to a bichromatic signal including a high frequency and a low frequency. In absence of noise, we show that for an appropriate amplitude of the high frequency driving, the response of the circuit estimated at the low frequency can be optimized via the phenomenon of vibrational resonance. Next, we show that under certain conditions, noise can contribute to the effect of vibrational resonance. Colored noise is also considered. Our experimental results are confirmed by a numerical analysis.

research product

On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model

International audience; We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real ex…

research product

Experimental and numerical study of noise effects in a FitzHugh–Nagumo system driven by a biharmonic signal

Abstract Using a nonlinear circuit ruled by the FitzHugh–Nagumo equations, we experimentally investigate the combined effect of noise and a biharmonic driving of respective high and low frequency F and f. Without noise, we show that the response of the circuit to the low frequency can be maximized for a critical amplitude B∗ of the high frequency via the effect of Vibrational Resonance (V.R.). We report that under certain conditions on the biharmonic stimulus, white noise can induce V.R. The effects of colored noise on V.R. are also discussed by considering an Ornstein–Uhlenbeck process. All experimental results are confirmed by numerical analysis of the system response.

research product

COLORED NOISE EFFECTS ON GHOST STOCHASTIC RESONANCE

International audience; We analyze the Ghost Stochastic Resonance (GSR) effect in an electronic circuit exactly ruled by the FitzHugh-Nagumo (FHN) equations, both numerically and experimentally. When the circuit is excited with a bichromatic driving with two close frequencies, we show that for an appropriate noise intensity the circuit response exhibits a ghost frequency which is not present in the biharmonic input signal. In this paper, we highlight the e ects of colored noise on GSR.

research product