Search results for "Nonparametric"

showing 10 items of 427 documents

Social capital and economic growth in Europe: nonlinear trends and heterogeneous regional effects

2016

After two decades of academic debate on the social capital-growth nexus, discussion still remains open. Most of the literature so far, however, has followed the one-size-its-all approach, neglecting that the great disparities across geographical units might have implications in this relationship. This article analyzes the role of two social capital indicators on the growth of 237 European regions in the period 1995–2007 by implementing a set of both parametric and non- parametric regressions. Whereas the former impose a linear functional form for the parameters, the latter relax this assumption providing a flexible frame in which the functional form is given by the data. The technique also …

Statistics and ProbabilityMacroeconomicsEconomics and Econometricsjel:Z1305 social sciencesSocialist mode of productionEconomic growth European regions nonparametric regression social capitalRegressionjel:C140502 economics and businessEconomics050207 economicsStatistics Probability and Uncertaintyjel:R11Nexus (standard)Social Sciences (miscellaneous)050205 econometrics Social capital
researchProduct

Assessing covariate imbalance in meta-analysis studies.

2010

The main goal of meta-analysis is to combine data across studies or data sets to obtain summary estimates. In this paper, the novelty is to propose a statistical tool to assess a possible covariate imbalance in baseline variables to investigate similarity of trials. We conducted the detection of the covariate imbalance, first, through some graphical comparison of the empirical cumulative distribution functions or ECDFs, which are built by putting together arms or trials according to some risk factor, and second, through some non-parametric tests such as the Kolmogorov–Smirnov and the Anderson–Darling tests. To overcome the huge presence of ties, we conducted the statistical tests on perturbe…

Statistics and ProbabilityMaleperturbationEpidemiologyComputer sciencePoolingHypercholesterolemiaAlpha interferonMeta-Analysis as TopicCovariateStatisticsEconometricsHumansSettore SECS-S/05 - Statistica SocialeECDFnon-parametric testStatistical hypothesis testingRandomized Controlled Trials as TopicCumulative distribution functionNonparametric statisticsNoveltyInterferon-alphacombinabilityHepatitis C ChronicMeta-analysisData Interpretation StatisticalFemaleHydroxymethylglutaryl-CoA Reductase InhibitorsStatistics in medicine
researchProduct

Forward likelihood-based predictive approach for space-time point processes

2011

Dealing with data from a space–time point process, the estimation of the conditional intensity function is a crucial issue even if a complete definition of a parametric model is not available. In particular, in case of exploratory contexts or if we want to assess the adequacy of a specific parametric model, some kind of nonparametric estimation procedure could be useful. Often, for these purposes kernel estimators are used and the estimation of the intensity function depends on the estimation of bandwidth parameters. In some fields, like for instance the seismological one, predictive properties of the estimated intensity function are pursued. Since a direct ML approach cannot be used, we pr…

Statistics and ProbabilityMathematical optimizationEcological ModelingSpace timespace–time point processesBandwidth (signal processing)Nonparametric statisticsEstimatorStatistical seismologynonparametric estimationPoint processParametric modellikelihood functionSettore SECS-S/01 - StatisticaLikelihood functionpredictive propertieMathematicsEnvironmetrics
researchProduct

On a set of data for the membrane potential in a neuron

2006

We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).

Statistics and ProbabilityModels NeurologicalNeural ConductionAction PotentialsTetrodotoxinType (model theory)Statistics NonparametricGeneral Biochemistry Genetics and Molecular BiologyMembrane PotentialsSet (abstract data type)MiceStatisticsAnimalsDiffusion (business)MathematicsCerebral CortexNeuronsMembrane potentialStochastic ProcessesQuantitative Biology::Neurons and CognitionGeneral Immunology and MicrobiologyStochastic processPyramidal CellsApplied MathematicsNonparametric statisticsGeneral MedicineElectrophysiologyElectrophysiologynervous systemDiffusion processModeling and SimulationPotassiumGeneral Agricultural and Biological SciencesBiological systemAlgorithmsMathematical Biosciences
researchProduct

Multivariate nonparametric tests of independence

2005

New test statistics are proposed for testing whether two random vectors are independent. Gieser and Randles, as well as Taskinen, Kankainen, and Oja have introduced and discussed multivariate extensions of the quadrant test of Blomqvist. This article serves as a sequel to this work and presents new multivariate extensions of Kendall's tau and Spearman's rho statistics. Two different approaches are discussed. First, interdirection proportions are used to estimate the cosines of angles between centered observation vectors and between differences of observation vectors. Second, covariances between affine-equivariant multivariate signs and ranks are used. The test statistics arising from these …

Statistics and ProbabilityMultivariate statisticsMultivariate analysisNonparametric statisticsAsymptotic distributionMultivariate normal distributionSpearman's rank correlation coefficientQuadrant testriippumattomuusPitman efficiencyKendall's tauStatisticsHigh-dimensional statisticsaffine invarianceStatistics Probability and UncertaintySpearman's rhoRobustnessMathematicsStatistical hypothesis testing
researchProduct

On easily interpretable multivariate reference regions of rectangular shape

2011

Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the…

Statistics and ProbabilityMultivariate statisticsNonparametric statisticsUnivariateMultivariate normal distributionGeneral MedicineStatisticsApplied mathematicsProbability distributionStatistics Probability and UncertaintyMarginal distributionQuantileParametric statisticsMathematicsBiometrical Journal
researchProduct

Affine-invariant rank tests for multivariate independence in independent component models

2016

We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent component analysis (ICA), we allow for the singular cases involving more than one Gaussian independent component. The proposed rank tests are based on componentwise signed ranks, à la Puri and Sen. Unlike the Puri and Sen tests, however, our tests (i) are affine-invariant and (ii) are, for adequately chosen scores, locally and asymptotically optimal (in the Le Cam sense) at prespecified densities. Asymptotic local powers and asymptotic relative efficiencies with respect to Wilks’…

Statistics and ProbabilityMultivariate statisticssingular information matricesRank (linear algebra)Gaussianuniform local asymptotic02 engineering and technology01 natural sciencesdistribution-free testsCombinatoricstests for multivariate independence010104 statistics & probabilitysymbols.namesakenormaalius0202 electrical engineering electronic engineering information engineeringApplied mathematics0101 mathematicsStatistique mathématiqueIndependence (probability theory)Parametric statisticsMathematicsDistribution-free testsuniform local asymptotic normalityNonparametric statistics020206 networking & telecommunicationsIndependent component analysisrank testsAsymptotically optimal algorithmsymbolsindependent component models62H1562G35Statistics Probability and UncertaintyUniform local asymptotic normality62G10
researchProduct

Gamma Kernel Intensity Estimation in Temporal Point Processes

2011

In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.

Statistics and ProbabilityNonparametric statisticsEstimatorKernel principal component analysisPoint processVariable kernel density estimationKernel embedding of distributionsModeling and SimulationKernel (statistics)Bounded domainStatisticsGamma distributionGamma kernel estimatorIntensity functionTemporal point processes.Settore SECS-S/01 - StatisticaMathematicsCommunications in Statistics - Simulation and Computation
researchProduct

Windowed Etas Models With Application To The Chilean Seismic Catalogs

2015

Abstract The seismicity in Chile is estimated using an ETAS (Epidemic Type Aftershock sequences) space–time point process through a semi-parametric technique to account for the estimation of parametric and nonparametric components simultaneously. The two components account for triggered and background seismicity respectively, and are estimated by alternating a ML estimation for the parametric part and a forward predictive likelihood technique for the nonparametric one. Given the geographic and seismological characteristics of Chile, the sensitivity of the technique with respect to different geographical areas is examined in overlapping successive windows with varying latitude. A different b…

Statistics and ProbabilityNonparametric statisticsManagement Monitoring Policy and LawInduced seismicityGeodesyPoint processPhysics::GeophysicsLatitudeSpace-time point processes ETAS model etasFLP R packagePredictive likelihoodStatisticsSensitivity (control systems)Computers in Earth SciencesAftershockGeologyParametric statistics
researchProduct

Hybrid recommendation methods in complex networks

2015

We propose here two new recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three relevant data sets, and we compare their performance with several recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow to attain an improvement of performances of up to 20\% with respect to existing non-parametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a …

Statistics and ProbabilityNormalization (statistics)Social and Information Networks (cs.SI)FOS: Computer and information sciencesPhysics - Physics and SocietyComputer scienceNonparametric statisticsFOS: Physical sciencesComputer Science - Social and Information NetworksCondensed Matter PhysicPhysics and Society (physics.soc-ph)Complex networkRecommender systemcomputer.software_genreComputer Science - Information RetrievalBipartite graphConvex combinationData miningNoisy datacomputerInformation Retrieval (cs.IR)Statistical and Nonlinear Physic
researchProduct