Search results for "Nonparametric"
showing 10 items of 427 documents
Social capital and economic growth in Europe: nonlinear trends and heterogeneous regional effects
2016
After two decades of academic debate on the social capital-growth nexus, discussion still remains open. Most of the literature so far, however, has followed the one-size-its-all approach, neglecting that the great disparities across geographical units might have implications in this relationship. This article analyzes the role of two social capital indicators on the growth of 237 European regions in the period 1995–2007 by implementing a set of both parametric and non- parametric regressions. Whereas the former impose a linear functional form for the parameters, the latter relax this assumption providing a flexible frame in which the functional form is given by the data. The technique also …
Assessing covariate imbalance in meta-analysis studies.
2010
The main goal of meta-analysis is to combine data across studies or data sets to obtain summary estimates. In this paper, the novelty is to propose a statistical tool to assess a possible covariate imbalance in baseline variables to investigate similarity of trials. We conducted the detection of the covariate imbalance, first, through some graphical comparison of the empirical cumulative distribution functions or ECDFs, which are built by putting together arms or trials according to some risk factor, and second, through some non-parametric tests such as the Kolmogorov–Smirnov and the Anderson–Darling tests. To overcome the huge presence of ties, we conducted the statistical tests on perturbe…
Forward likelihood-based predictive approach for space-time point processes
2011
Dealing with data from a space–time point process, the estimation of the conditional intensity function is a crucial issue even if a complete definition of a parametric model is not available. In particular, in case of exploratory contexts or if we want to assess the adequacy of a specific parametric model, some kind of nonparametric estimation procedure could be useful. Often, for these purposes kernel estimators are used and the estimation of the intensity function depends on the estimation of bandwidth parameters. In some fields, like for instance the seismological one, predictive properties of the estimated intensity function are pursued. Since a direct ML approach cannot be used, we pr…
On a set of data for the membrane potential in a neuron
2006
We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).
Multivariate nonparametric tests of independence
2005
New test statistics are proposed for testing whether two random vectors are independent. Gieser and Randles, as well as Taskinen, Kankainen, and Oja have introduced and discussed multivariate extensions of the quadrant test of Blomqvist. This article serves as a sequel to this work and presents new multivariate extensions of Kendall's tau and Spearman's rho statistics. Two different approaches are discussed. First, interdirection proportions are used to estimate the cosines of angles between centered observation vectors and between differences of observation vectors. Second, covariances between affine-equivariant multivariate signs and ranks are used. The test statistics arising from these …
On easily interpretable multivariate reference regions of rectangular shape
2011
Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the…
Affine-invariant rank tests for multivariate independence in independent component models
2016
We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent component analysis (ICA), we allow for the singular cases involving more than one Gaussian independent component. The proposed rank tests are based on componentwise signed ranks, à la Puri and Sen. Unlike the Puri and Sen tests, however, our tests (i) are affine-invariant and (ii) are, for adequately chosen scores, locally and asymptotically optimal (in the Le Cam sense) at prespecified densities. Asymptotic local powers and asymptotic relative efficiencies with respect to Wilks’…
Gamma Kernel Intensity Estimation in Temporal Point Processes
2011
In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.
Windowed Etas Models With Application To The Chilean Seismic Catalogs
2015
Abstract The seismicity in Chile is estimated using an ETAS (Epidemic Type Aftershock sequences) space–time point process through a semi-parametric technique to account for the estimation of parametric and nonparametric components simultaneously. The two components account for triggered and background seismicity respectively, and are estimated by alternating a ML estimation for the parametric part and a forward predictive likelihood technique for the nonparametric one. Given the geographic and seismological characteristics of Chile, the sensitivity of the technique with respect to different geographical areas is examined in overlapping successive windows with varying latitude. A different b…
Hybrid recommendation methods in complex networks
2015
We propose here two new recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three relevant data sets, and we compare their performance with several recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow to attain an improvement of performances of up to 20\% with respect to existing non-parametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a …