Search results for "Nuclear shell model"
showing 10 items of 50 documents
Study of isomeric states in $^{198,200,202,206}$Pb and $^{206}$Hg populated in fragmentation reactions
2018
International audience; Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populatedfollowing reactions of a relativistic 208Pb primary beam impinging on a9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg wereisotopically separated and implanted in a passive stopper positioned in thefocal plane of the GSI Fragment Separator. Delayed γ rays were detected withthe Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluatedand interpreted with shell-model calculations. The momentumdependentpopulation of isomeric states in the two-nucleon hole nuclei206Pb/206Hg was found to differ from the population of multi neutron-holeisomeric states in 198…
Spins, Electromagnetic Moments, and Isomers of $^{107-129}Cd$
2013
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell. The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-uv excitation at 214.5 nm and radioactive-beam bunchin…
Properties of heavy nuclei measured at the GSI SHIP
2004
Abstract The nuclear shell model predicts that the next doubly magic shell-closure beyond 208 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘Super-Heavy Elements’ (SHEs). The measured decay data reveal that for the heaviest elements, the dominant decay mode is α emission, not fission. Decay properties as well as reaction cross-sections are compared with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques.At a higher sensitivity, the exploration of …
Shell-model study of partial muon-capture rates in light nuclei
1998
Abstract The nuclear shell model is used to study ordinary muon capture of light nuclei in the p, sd and p-sd shell-model spaces. Several well-established two-body interactions are applied to calculate the involved nuclear matrix elements and the emerging results are compared with each other. The resulting theoretical partial muon-capture rates are compared with experimental data and their stability against different model spaces and interactions studied. The effects of the induced-pseudoscalar strength, C p , on the capture rates is discussed. The relation between the allowed partial muon capture rates and the Gamow-Teller strength function is stressed.
Analysis of the 2νββ decay and muon capture reactions for the mass A = 46 and A = 48 nuclei using the nuclear shell model
2005
We discuss the two-neutrino double-beta decays of 46Ca and 48Ca by using the nuclear shell model with well-tested two-body interactions. We also discuss the ordinary muon-capture (OMC) reaction on the final nuclei, 46Ti and 48Ti, of these decays. The OMC leads to the virtual states of the intermediate nuclei, 46Sc and 48Sc, in these double-beta decays.
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
2020
We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with experimental data, to calculate the cross sections for populating specific excited states of the caesium nuclei produced by neutrino capture on $^{131}$Xe and $^{136}$Xe. The shell model is further used to compute the decay schemes of the low-lying $1^{+}$ excited states of $^{136}$Cs, for which there is sparse experimental data. We explore the possibility of tagging the characteristic de-excitation $\gamma$-rays/conversion electrons using two techniques: spatial separation…
gA -driven shapes of electron spectra of forbidden β decays in the nuclear shell model
2017
The evolution of the shape of the electron spectra of 16 forbidden ${\ensuremath{\beta}}^{\ensuremath{-}}$ decays as a function of ${g}_{\mathrm{A}}$ was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The $\ensuremath{\beta}$ spectra of $^{94}\mathrm{Nb}({6}^{+})\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}^{94}\mathrm{Mo}({4}^{+})$ and $^{98}\mathrm{Tc}({6}^{+})\ensuremath{\rightarrow}\phantom{\rule{0.16em}{0ex}}^{98}\mathrm{Ru}({4}^{+})$ were found to depend strongly on ${g}_{\mathrm{A}}$, which makes them excellent candidates for the determination of the effective value of ${g}_{\mathrm{A}}$ wit…
Second-forbidden nonunique β− decays of Na24 and Cl36 assessed by the nuclear shell model
2020
We have performed a systematic study of the $logft$ values, shape factors, and electron spectra for the second-forbidden nonunique ${\ensuremath{\beta}}^{\ensuremath{-}}$ decays of $^{24}\mathrm{Na}({4}^{+})\ensuremath{\rightarrow}^{24}\mathrm{Mg}({2}^{+})$ and $^{36}\mathrm{Cl}({2}^{+}){\ensuremath{\rightarrow}}^{36}\mathrm{Ar}({0}^{+})$ transitions under the framework of the nuclear shell model. We have performed the shell model calculations in the $sd$ model space, using more recent microscopic effective interactions such as Daejeon16, chiral N3LO, and JISP16. These interactions are derived from the no-core shell model wave functions using Okubo-Lee-Suzuki transformation. For comparison,…
Low-lying states in Ra219 and Rn215 : Sampling microsecond α -decaying nuclei
2018
Short-lived α-decaying nuclei "northeast" of 208Pb in the chart of nuclides were studied using the reaction 48Ca+243Am with the decay station TASISpec at TASCA, GSI Darmstadt. Decay energies and times from pile-up events were extracted with a tailor-made pulse-shape analysis routine and specific α-decay chains were identified in a correlation analysis. Decay chains starting with the even-even 220Ra and its odd-A neighbors, 219Fr, and 219,221Ra, with a focus on the 219Ra→215Rn decay, were studied by means of α-γ spectroscopy. A revised α-decay scheme of 219Ra is proposed, including a new decay branch from a previously not considered isomeric state at 17 keV excitation energy. Conclusions on …
Two-Phonon Octupole Excitation in 146Gd
2006
The excited states in 146Gd have been re‐investigated with the 144Sm(α,2n) reaction using a modern Ge γ‐ray array including a polarimeter. Amongst the non‐yrast states populated in this reaction we have identified the aligned 6+ member of the two‐phonon octupole quartet from the observation of the E3 branching to the one phonon 3− state. Our results represent the first observation of a 6+→3−→0+ E3 cascade in an even‐even nucleus.