6533b827fe1ef96bd1286f79
RESEARCH PRODUCT
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
Brian LenardoScott HaselschwardtJouni SuhonenPekka Pirinensubject
Physics - Instrumentation and DetectorsSolar neutrinochemistry.chemical_elementFOS: Physical sciencesksenonhiukkasfysiikka7. Clean energy01 natural sciencesnucleus-neutrino interactionsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XenonHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSensitivity (control systems)010306 general physicsPhysics010308 nuclear & particles physicsNuclear shell modelshell modelneutriinotInstrumentation and Detectors (physics.ins-det)nuclear structure and decays3. Good healthProjection (relational algebra)High Energy Physics - PhenomenologychemistryilmaisimetExcited statesolar neutrinosNeutrinoydinfysiikkaEnergy (signal processing)description
We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with experimental data, to calculate the cross sections for populating specific excited states of the caesium nuclei produced by neutrino capture on $^{131}$Xe and $^{136}$Xe. The shell model is further used to compute the decay schemes of the low-lying $1^{+}$ excited states of $^{136}$Cs, for which there is sparse experimental data. We explore the possibility of tagging the characteristic de-excitation $\gamma$-rays/conversion electrons using two techniques: spatial separation of their energy deposits using event topology and their time separation using delayed coincidence. The efficiencies in each case are evaluated within a range of realistic detector parameters. We find that the topological signatures are likely to be dominated by radon backgrounds, but that a delayed coincidence signature from long-lived states predicted in $^{136}$Cs may enable background-free detection of CNO neutrino interactions in next-generation experiments with smaller uncertainty than current measurements. We also estimate the sensitivity as a function of exposure for detecting the solar-temperature-induced line shift in $^{7}$Be neutrino emission, which may provide a new test of solar models.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-29 |