Search results for "Numbers"
showing 10 items of 128 documents
Rapid construction of algebraic axioms from samples
1991
Abstract An axiom is called reliable if it is confirmed in several places in a given sample of algebra. A very effective algorithm for enumerating such axioms is described.
The “Gentle Law” of Large Numbers: Stifter’s Urban Meteorology
2020
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy
2021
We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…
Regularity and h-polynomials of toric ideals of graphs
2020
For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.
MR 2944715 Reviewed Zhu S. On the recursion formula for double Hurwitz numbers. Proceedings of the American Mathematical Society (2012) 140, no. 11, …
2013
Let $\mu = (\mu_{1}, \mu_{2}, \ldots, \mu_{m})$ and $\nu = (\nu_{1}, \nu_{2}, \ldots, \nu_{n})$ be two partitions of a positive integer $d$. In this paper, the author considers degree $d$ branched coverings of $\mathbb{P}^{1}$ with at most two special points, $0$ and $\infty$. Specifically, the purpose of the author is to give a recursion formula for double Hurwitz numbers $H^{g}_{\mu, \nu}$ by the cut-join analysis. Here, $H^{g}_{\mu, \nu}$ denotes the number of genus $g$ branched covers of $\mathbb{P}^{1}$ with branching date corresponding to $\mu$ and $\nu$ over $0$ and $\infty$, respectively. Furthemore, as application, the author gets a polynomial identity for linear Goulden-Jackson-Va…
MR 2827979 Reviewed Lando, S. K. Hurwitz numbers: on the edge between combinatorics and geometry. Proceedings of the International Congress of Mathem…
2012
Object of study in this paper are the Hurwitz numbers. They were introduced by Hurwitz in the end of nineteenth century and still they are of great interest. The Hurwitz numbers are important in topology because they enumerate ramified coverings of two-dimensional surfaces, but not only. The author observes that their importance in modern research is mainly due to their connections with the geometry of the moduli space of curves. Moreover, they are of interest in mathematical physics and group theory. The purpose of this paper is to describe the progress made in the last couple of decades in understanding Hurwitz numbers.
Moments and Laws of Large Numbers
2020
The most important characteristic quantities of random variables are the median, expectation and variance. For large n, the expectation describes the typical approximate value of the arithmetic mean (X 1+…+X n )/n of independent and identically distributed random variables (law of large numbers).
A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM
2011
We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves…
Families of rational solutions to the KPI equation of order 7 depending on 12 parameters
2017
International audience; We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1)2= 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.