Search results for "OXIDE"

showing 10 items of 6424 documents

Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification

2013

Abstract Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in s…

0106 biological sciencesSettore BIO/07 - EcologiaBiogeochemical cycle010504 meteorology & atmospheric sciencesCarbonatesAquatic ScienceOceanography01 natural sciencesCalcium CarbonateMarine geochemistrychemistry.chemical_compoundCarbon capture and storageSeawater14. Life underwaterSeabed0105 earth and related environmental sciences010604 marine biology & hydrobiologyCarbonate saturation stateOcean acidificationOcean acidificationCarbon DioxidePollutionSettore GEO/08 - Geochimica E VulcanologiaVolcanic ventsOceanographyCalcium carbonatechemistryBaysItaly13. Climate actionCarbon dioxideCarbonateSeawaterBayGeologyWater Pollutants ChemicalEnvironmental MonitoringMarine Pollution Bulletin
researchProduct

Ocean acidification does not impair predator recognition but increases juvenile growth in a temperate wrasse off CO2seeps

2017

8 pages, 4 figures, supplementary data https://doi.org/10.1016/j.marenvres.2017.10.013

0106 biological sciencesSettore BIO/07 - EcologiaCO2 ventsCO2ventEffects-fishAquatic ScienceOceanography010603 evolutionary biology01 natural sciencesPredationStress PhysiologicalmedicineMediterranean SeaJuvenileSeawaterPerciformePredatorGlobal changeOtolithRisk assessmentSymphodus ocellatusSettlementbiologyEcologypHAnimalSymphodus ocellatus010604 marine biology & hydrobiologyOcean acidificationGeneral MedicineJuvenile fishCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationPollutionmedicine.anatomical_structureCarbon dioxideWrassePredatory BehaviorSymphodus ocellatuEnvironmental Monitoring
researchProduct

Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities.

2013

To reduce the negative effect of climate change on Biodiversity, the use of geological CO2 sequestration has been proposed; however leakage from underwater storages may represent a risk to marine life. As extracellular homeostasis is important in determining species' ability to cope with elevated CO2, we investigated the acid-base and ion regulatory responses, as well as the density, of sea urchins living around CO2 vents at Vulcano, Italy. We conducted in situ transplantation and field-based laboratory exposures to different pCO2/pH regimes. Our results confirm that sea urchins have some ability to regulate their extracellular fluid under elevated pCO2. Furthermore, we show that even in cl…

0106 biological sciencesSettore BIO/07 - EcologiaGeological Phenomena010504 meteorology & atmospheric sciencesClimate ChangeSpecies distributionBiodiversityMarine lifeAquatic ScienceOceanography01 natural sciencesParacentrotus lividushowever leakage from underwater storages may represent a risk to marine life. As extracellular homeostasis is important in determining species' ability to cope with elevated CO2 we investigated the acid-base and ion regulatory responses as well as the density of sea urchins living around CO2 vents at Vulcano Italy. We conducted in situ transplantation and field-based laboratory exposures to different pCO2/pH regimes. Our results confirm that sea urchins have some ability to regulate their extracellular fluid under elevated pCO2. Furthermore we show that even in closely-related taxa divergent physiological capabilities underlie differences in taxa distribution around the CO2 vent. It is concluded that species distribution under the sort of elevated CO2 conditions occurring with leakages from geological storages and future ocean acidification scenarios may partly be determined by quite subtle physiological differentiation.Mediterranean seaBenthosAnimalsSeawater14. Life underwaterEcosystem0105 earth and related environmental sciencesbiologyEcology010604 marine biology & hydrobiologyTo reduce the negative effect of climate change on Biodiversity the use of geological CO2 sequestration has been proposedOcean acidificationCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationAdaptation PhysiologicalPollutionTransplantationOceanographyItaly13. Climate actionSea UrchinsWater Pollutants Chemical
researchProduct

Long-term effects of elevated CO2 on the population dynamics of the seagrass Cymodocea nodosa: Evidence from volcanic seeps

2021

Population reconstruction techniques was used to assess for the first time the population dynamics of a seagrass, Cymodocea nodosa, exposed to long-term elevated CO2 near three volcanic seeps and compared them with reference sites away from the seeps. Under high CO2, the density of shoots and of individuals (apical shoots), and the vertical and horizontal elongation and production rates, were higher than at the reference sites. Nitrogen limitation effects on rhizome elongation and production rates and on biomass were more evident than CO2 as these were highest at the location where the limitation of nitrogen was highest. At the seep where the availability of CO2 was highest and nitrogen low…

0106 biological sciencesSettore BIO/07 - EcologiaPopulation dynamicsCymodocea nodosaPopulation2010501 environmental sciencesAquatic ScienceOceanography01 natural sciencesVolcanic COMediterranean SeaHumansSeawaterBiomasseducationSeagrass0105 earth and related environmental sciencesseepsBiomass (ecology)education.field_of_studyAlismatalesbiology010604 marine biology & hydrobiologyOcean acidificationfood and beveragesOcean acidificationVolcanic CO2 seepsCarbon Dioxidebiology.organism_classificationPollutionRhizomeReconstruction techniquesPetroleum seepSeagrassAgronomyShoot
researchProduct

Stabilization of an enzymatic extract from Penicillium camemberti containing lipoxygenase and hydroperoxide lyase activities

2008

International audience; The stabilization of an enzymatic extract, obtained from Penicillium camemberti containing lipoxygenase (LOX) and hydroperoxide lyase (HPL) activities, was investigated using selected additives. Although the addition of KCl (86%, w/w) to the enzymatic extract decreased slightly (7%) the LOX activity, it increased HPL activity by 2.25 fold; however, the addition of dextran resulted in the inactivation of both enzymatic activities. The stability of the solid lyophilized enzymatic extract was greater in the presence of KCl than that without it, with ∼100% residual activity after 8 and 4 weeks of storage at −80 °C, for LOX and HPL, respectively. The rate constants of ina…

0106 biological sciencesSucroseLipoxygenaseBioengineering01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryHydroperoxide lyase03 medical and health scienceschemistry.chemical_compoundLipoxygenase010608 biotechnologyGlycerolmedicine[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyThermostabilitychemistry.chemical_classification0303 health sciencesbiologyPenicillium camembertiAdditivesbiology.organism_classificationStabilizationDextranEnzymechemistryBiochemistryPenicillium camembertibiology.proteinMannitolmedicine.drug
researchProduct

The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells

2002

Summary A cDNA encoding a protein, NtrbohD, located on the plasma membrane and homologue to the flavocytochrome of the neutrophil NADPH oxidase, was cloned in tobacco. The corresponding mRNA was accumulated when tobacco leaves and cells were treated with the fungal elicitor cryptogein. After elicitation with cryptogein, tobacco cells transformed with antisense constructs of NtrbohD showed the same extracellular alkalinization as the control, but no longer produced active oxygen species (AOS). This work represents the first demonstration of the function of a homologue of gp91–phox in AOS production in elicited tobacco cells.

0106 biological sciencesTime FactorsNicotiana tabacumMolecular Sequence DataPlant ScienceBiologyGenes Plant01 natural sciencesFungal Proteins[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsComplementary DNATobaccoGene expressionGeneticsExtracellularAOSAmino Acid SequenceRNA MessengerCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesOxidase testNADPH oxidaseGene Expression ProfilingAlgal ProteinsCell MembraneHydrogen PeroxideCell BiologyHydrogen-Ion ConcentrationPlants Genetically Modifiedbiology.organism_classification3. Good healthElicitorCell biologyPlant LeavesProtein TransportBiochemistryCell culturebiology.proteinOxidoreductasesReactive Oxygen Species010606 plant biology & botany
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

2013

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

0106 biological sciences[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyMESH : Azetidinecarboxylic AcidFMN ReductaseArabidopsis thalianaMutantArabidopsisGene ExpressionPlant Science01 natural sciencesMESH : Cation Transport ProteinsMESH : IronMESH : Arabidopsis ProteinsNicotianamine synthaseMESH : Plants Genetically Modifiedchemistry.chemical_compoundMESH : ArabidopsisGene Expression Regulation PlantGene expressionMESH: Genes PlantArabidopsis thalianaMESH : DNA BacterialHomeostasisMESH: ArabidopsisNicotianamineMESH: Stress PhysiologicalCation Transport ProteinsMESH : Adaptation PhysiologicalMESH : Cadmium2. Zero hungerchemistry.chemical_classification0303 health sciencesCadmiumMESH: IronbiologyGeneral MedicineIron DeficienciesPlants Genetically ModifiedAdaptation PhysiologicalMESH: Azetidinecarboxylic AcidMESH : PhenotypePhenotypeBiochemistryMESH: HomeostasisMESH : HomeostasisMESH : MutationAzetidinecarboxylic AcidCadmiumDNA BacterialMESH: Gene ExpressionMESH: MutationIronMESH: Cadmiumchemistry.chemical_elementMESH: FerritinsMESH: Arabidopsis ProteinsMESH: Alkyl and Aryl TransferasesGenes PlantMESH: PhenotypeNicotianamine synthase03 medical and health sciencesMESH: Cation Transport ProteinsStress PhysiologicalIron homeostasisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIron deficiency (plant disorder)MESH: Gene Expression Regulation PlantMESH : Genes PlantMESH : Alkyl and Aryl TransferasesMESH : Stress Physiological030304 developmental biologyMESH : FMN ReductaseAlkyl and Aryl TransferasesArabidopsis ProteinsIron deficiencyNitric oxideNicotianaminebiology.organism_classificationMESH: Adaptation PhysiologicalMESH: DNA BacterialMESH : Gene ExpressionEnzymechemistryMESH: FMN ReductaseMESH: Plants Genetically ModifiedFerritinsMutationbiology.proteinMESH : FerritinsAgronomy and Crop ScienceMESH : Gene Expression Regulation Plant010606 plant biology & botany
researchProduct

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct

Growth and activities of enzymes of primary metabolism in batch cultures of Catharanthus roseus cell suspension under different pCO2 conditions

1988

In vitro enzyme activities of glycolysis, pentose-phosphate pathway and dark CO2 fixation were assayed in batch cultures of heterotrophic Catharanthus roseus cells under various gassing rates and partial pressures of carbon dioxide. Detrimental effects of low pCO2 culture conditions on the growth characteristics could be linked to marked changes in levels of enzymes of primary metabolism during growth. The enzyme levels observed during the early stages of growth were found to be more stable when a constant pCO2 (20 mbar) was maintained and enabled exponential growth to be reached more rapidly. The importance of carbon dioxide as a “conditioning factor” of the culture medium is discussed.

0106 biological sciences[SDV]Life Sciences [q-bio]HeterotrophHorticulture01 natural sciences03 medical and health scienceschemistry.chemical_compoundComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyCarbon fixationPlant physiologyMetabolismCatharanthus roseusbiology.organism_classification[SDV] Life Sciences [q-bio]EnzymeBiochemistrychemistryCell cultureCULTURE DE CELLULECarbon dioxideGAZ CARBONIQUE010606 plant biology & botany
researchProduct