Search results for "Obstacle"
showing 10 items of 105 documents
Making Industrial Robots Smarter with Adaptive Reasoning and Autonomous Thinking for Real-Time Tasks in Dynamic Environments: A Case Study
2018
In order to extend the abilities of current robots in industrial applications towards more autonomous and flexible manufacturing, this work presents an integrated system comprising real-time sensing, path-planning and control of industrial robots to provide them with adaptive reasoning, autonomous thinking and environment interaction under dynamic and challenging conditions. The developed system consists of an intelligent motion planner for a 6 degrees-of-freedom robotic manipulator, which performs pick-and-place tasks according to an optimized path computed in real-time while avoiding a moving obstacle in the workspace. This moving obstacle is tracked by a sensing strategy based on ma-chin…
Visual contact with catadioptric cameras
2015
Abstract Time to contact or time to collision (TTC) is utmost important information for animals as well as for mobile robots because it enables them to avoid obstacles; it is a convenient way to analyze the surrounding environment. The problem of TTC estimation is largely discussed in perspective images. Although a lot of works have shown the interest of omnidirectional camera for robotic applications such as localization, motion, monitoring, few works use omnidirectional images to compute the TTC. In this paper, we show that TTC can be also estimated on catadioptric images. We present two approaches for TTC estimation using directly or indirectly the optical flow based on de-rotation strat…
Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments — a case study
2019
Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision a…
Clothoid-Based Three-Dimensional Curve for Attitude Planning
2019
Interest in flying robots, also known as unmanned aerial vehicles (UAVs), has grown during last years in both military and civil fields [1, 2]. The same happens to autonomous underwater vehicles (AUVs) [3]. These vehicles, UAVs and AUVs, offer a wide variety of possible applications and challenges, such as control, guidance or navigation [2, 3]. In this sense, heading and attitude control in UAVs is very important [4], particularly relevant in airplanes (fixed-wing flying vehicles), because they are strongly non-linear, coupled, and tend to be underactuated systems with non-holonomic constraints. Hence, designing a good attitude controller is a difficult task [5, 6, 7, 8, 9], where stabilit…
Scale invariant line matching on the sphere
2013
International audience; This paper proposes a novel approach of line matching across images captured by different types of cameras, from perspective to omnidirectional ones. Based on the spherical mapping, this method utilizes spherical SIFT point features to boost line matching and searches line correspondences using an affine invariant measure of similarity. It permits to unify the commonest cameras and to process heterogeneous images with the least distortion of visual information.
Gradient-based time to contact on paracatadioptric camera
2013
International audience; The problem of time to contact or time to collision (TTC) estimation is largely discussed in perspective images. However, a few works have dealt with images of catadioptric sensors despite of their utility in robotics applications. The objective of this paper is to develop a novel model for estimating TTC with catadioptric images relative to a planar surface, and to demonstrate that TTC can be estimated only with derivative brightness and image coordinates. This model, called "gradient based time to contact", does not need high processing such as explicit estimation of optical flow and feature detection/or tracking. The proposed method allows to estimate TTC and give…
Gap perception in bumblebees
2018
ABSTRACT A number of insects fly over long distances below the natural canopy, where the physical environment is highly cluttered consisting of obstacles of varying shape, size and texture. While navigating within such environments, animals need to perceive and disambiguate environmental features that might obstruct their flight. The most elemental aspect of aerial navigation through such environments is gap identification and ‘passability’ evaluation. We used bumblebees to seek insights into the mechanisms used for gap identification when confronted with an obstacle in their flight path and behavioral compensations employed to assess gap properties. Initially, bumblebee foragers were train…
Energy analysis of a non-linear dynamic impact using FEM
2014
In the car industry, the Finite Element Method (FEM) is being more and more used to analyze the crashworthiness performance of vehicles. In order to validate the results, these impact simulations are normally compared with real crash footage and acceleration data. This paper studies the deformation- and energy output of a simple dummy model during a non-linear dynamic impact. The dummy model is crashed into an obstacle at three different velocities to observe the energy dissipated through different damping mechanisms. Furthermore, in impact simulations, material damping plays an important role in energy dissipation. However, it can be difficult to determine realistic damping parameter value…
Associations of Physical Fitness and Body Composition Characteristics With Simulated Military Task Performance
2017
Pihlainen, K, Santtila, M, Hakkinen, K, and Kyrolainen, H. Associations of physical fitness and body composition characteristics with simulated military task performance. J Strength Cond Res 32(4): 1089-1098, 2018-The purpose of this study was to evaluate the associations of physical fitness and body composition characteristics with anaerobic endurance performance, tested in the combat load using the occupationally relevant military simulation test (MST). Eighty-one male soldiers, deployed to a crisis management operation in the Middle East, volunteered for the study and participated in a test battery consisting measurements of muscle strength, body composition characteristics, endurance ca…
Thin obstacle problem : Estimates of the distance to the exact solution
2018
We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., they are valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation c…