Search results for "Odio"
showing 10 items of 258 documents
SIMULTANEOUS DETERMINATION OF ATP, ITS METABOLITES AND NAD+ IN BLOOD BY HPLC WITH PHOTODIODE ARRAY DETECTOR
2013
SIMULTANEOUS DETERMINATION OF ATP, ITS METABOLITES AND NAD+ IN BLOOD BY HPLC WITH PHOTODIODE ARRAY DETECTOR Gueli Maria Concetta, Cusimano Vincenza, Lo Re Marianna, Giuseppe Salemi Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNEC), Università degli Studi di Palermo. Nucleotides are major high-energy phosphate carriers, subunits of nucleic acids and precursors for the synthesis of nucleotide cofactors such as NAD+ and SAM. The study of purine nucleotides metabolism is very important topic for a right understanding for the cellular life. Living cells rely on ATP for growth, differentiation, and response to physiological stimuli and environmental stress. We propose a fa…
Responsivity measurements of N-on-P and P-on-N silicon photomultipliers in the continuous wave regime
2013
We report the electrical and optical comparison, in continuous wave regime, of two novel classes of silicon photomultipliers (SiPMs) fabricated in planar technology on silicon P-type and N-type substrate respectively. Responsivity measurements have been performed with an incident optical power from tenths of picowatts to hundreds of nanowatts and on a broad spectrum, ranging from ultraviolet to near infrared (340-820 nm). For both classes of investigated SiPMs, responsivity shows flat response versus the optical incident power, when a preset overvoltage and wavelength is applied . More in detail, this linear behavior extends up to about 10 nW for lower overvoltages, while a shrink is observ…
Optical characterization of phase transitions in pure polymers and blends
2015
To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history impo…
Evaluation of a commercial APD array (Avalanche PhotoDiode) for a readout detector in a hadrontherapy beam characterization application
2010
The aim of the present work is the characterization of the S8898–128–02 Avalanche PhotoDiode array (APDs) from Hamamatsu Photonics. This work includes the implementation of a readout system as well as electronic noise estimation in APDs under several conditions varying integration times and clock frequencies.
Test and Simulation of a LYSO+APD matrix with a tagged Photon Beam from 40 to 300 MeV
2012
Understanding the energy resolution terms for LYSO based calorimeters with APD readout at low energy (< 500 MeV) is relevant both for the completion of the KLOE-2 experiment, at DAΦNE, and for the design of the Mu2e calorimeter. In this work, we present a dedicated comparison between experimental data, taken in 2011 at the MAMI tagged photon beam facility with a crystal matrix prototype, and a full Geant-4 simulation of this detector. The crystal prototype matrix consisted of 9 2×2 × 15 cm3 LYSO crystals read-out by 10×10 mm2 Hamamatsu avalanche photodiodes (APD) surrounded by 8 PbWO4 crystals read-out by Bialkali photomultipliers for outer leakage recovery granting a total transverse cover…
The backward end-cap for the PANDA electromagnetic calorimeter
2015
The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yiel…
Background and muon counting rates in underground muon measurements with a plastic scintillator counter based on a wavelength shifting fibre and a mu…
2010
AbstractIn this short note we present results of background measurements carried out with polystyrene based cast plastic 12.0×12.0×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ∼0.37 of a minimum ionizing particle is approximately 1.3 Hz.
Time response of avalanche photodiodes as a function of the internal gain
1998
Abstract Using a red LED and a blue laser as a light source, time response of avalanche photodiodes and Metal-Resistive Silicon (MRS) layer avalanche photodiodes [1] has been measured. A strong dependence of the time resolution on the internal gain has been observed. The obtained results show that the increase of the internal gain improves the time resolution. However, there exists a critical value for the internal gain. Beyond this value a deterioration of the time resolution is observed.
Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment
2009
The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.
Gain stabilization and noise minimization for SiPMs at cryogenic temperatures
2018
Abstract The performance of solid-state photon detectors such as avalanche photodiodes or silicon photomultipliers (SiPMs) is strongly affected by temperature. Important device characteristics for the detection of low light levels or single photons are photon detection efficiency, dark noise, and gain. In the present work the C-series SiPMs from SensL was characterized in cryogenic environments. At 77 K the SiPMs proved to be an excellent choice for single photon detection and an operation point with minimum noise contributions was found. At 4 K the performance was degraded, exhibiting a smaller gain and a larger noise.