Search results for "Optic"

showing 10 items of 15126 documents

High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO

2011

International audience; We present a high-pressure study of ZnO carried out in the mid- to far-infrared frequency domain with the aim of characterizing the optic modes of wurtzite and rocksalt ZnO. We obtained the pressure coefficients of the E1(TO), E1(LO), A1(TO), and A1(LO) modes of the low-pressure wurtzite phase and compare them with previous Raman measurements. The optical modes of the high-pressure rocksalt phase are infrared active, so we were able to determine their wave numbers and pressure dependencies. In the wurtzite phase, high pressure induces a slight decrease in both longitudinal and transverse effective charges. The decrease is more pronounced in the rocksalt phase.

010302 applied physicsMaterials scienceCondensed matter physicsInfraredbusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsTransverse planesymbols.namesakeSemiconductorOpticsFrequency domainPhase (matter)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencessymbolsPACS : 78.30.Fs 64.70.kgWavenumber0210 nano-technologyRaman spectroscopybusinessWurtzite crystal structure
researchProduct

Acoustic vibrations of monoclinic zirconia nanocrystals

2011

International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…

010302 applied physicsMaterials scienceCondensed matter physicsIsotropy[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographysymbols.namesakeGeneral Energy0103 physical sciencessymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Cubic zirconiaPhysical and Theoretical ChemistryElasticity (economics)0210 nano-technologyAnisotropyRaman spectroscopyMonoclinic crystal system
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct

Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks

2020

The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistanceAnnealing (metallurgy)02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTunnel magnetoresistanceExchange biasFerromagnetismCondensed Matter::Superconductivity0103 physical sciences0210 nano-technologyQuantum tunnellingIEEE Magnetics Letters
researchProduct

Modification of magnetic anisotropy in Ni thin films by poling of (011) PMN-PT piezosubstrates

2016

ABSTRACTThis study reports the magnetic and magnetotransport properties of 20 nm thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, is found to depend on the polarization state of the piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by a factor of 12 at room temperature and a factor of 21 at 50 K for the current direction along the PMN-PT [100] direction, and slightly increases for the [01] current direction. Simultaneously, a strong increase in the …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistancePoling02 engineering and technologySubstrate (electronics)Sputter depositionCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic anisotropyNuclear magnetic resonanceArtificial multiferroicsthin films0103 physical sciencesmagnetoelectric couplingddc:530CrystalliteThin film0210 nano-technology
researchProduct

Tetragonal Heusler Compounds for Spintronics

2013

With respect to the requirements of spin torque transfer (STT) materials, one the most promising materials families are the tunable tetragonal Heusler compounds based on Mn2YZ (Y=Co,Fe,Ni,Rh,...; Z=Al, Ga, Sn). They form the inverse cubic Heusler structure with three distinct magnetic sublattices, which allows a fine tuning of the magnetic properties. Starting with the stoichiometric Mn3Ga compound, we explored the complete phase diagram of Mn3-xYxZ (Y=Co, Fe, Ni and Z=Ga ). All series exhibit thermally stable magnetic properties. As we demonstrate, Mn3-xFexGa series, which are tetragonal over the whole range of compositions, are good as hard magnets, whereas magnetically more weak Mn3-xNix…

010302 applied physicsMaterials scienceCondensed matter physicsSpintronicsSpin-transfer torque02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemFerromagnetismMagnet0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyStoichiometryPhase diagramIEEE Transactions on Magnetics
researchProduct

Space Charge Measurement under DC and DC Periodic Waveform

2018

In High Voltage systems, Partial Discharges (PDs) monitoring are one of the main diagnostic instrument to evaluate the reliability of the apparatus. Under Alternating Current (AC) stress, PDs detection and recognition techniques are well consolidated. On the contrary, the monitoring of PDs under Direct Current (DC) stress is difficult due to complexities related to the nature of the phenomenon, which cause the beginning of PDs events in proximity of the dielectric breakdown. This problem has been partially overcome by using a continuous Periodic waveform (DCP) with positive average value, as described in a recent published work. Under DC stress, another degradation factor is the Space Charg…

010302 applied physicsMaterials scienceDielectric strengthPEA methodElectronic Optical and Magnetic MaterialDirect currentHigh voltageDC stre01 natural sciencesSpace chargeSpace chargelaw.inventionComputational physicsStress (mechanics)Settore ING-IND/31 - ElettrotecnicaDCP strelawDCP waveform0103 physical sciencesWaveformElectrical and Electronic Engineering010306 general physicsAlternating currentVoltage
researchProduct

The effects of the additive of Eu ions on elastic and electric properties of BaTiO3ceramics

2016

ABSTRACTThe BaTiO3 and BaTiO3+X%wt.Eu2O3 (X = 1, 2, 3) ceramics were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of an X-ray diffraction technique and scanning electron microscopy, respectively. Elastic moduli were determined with the use of an ultrasonic method. The dielectric permittivity (ϵ′) and tanδ as a function of composition and temperature were investigated. The increasing concentration of Eu ions leads to a slight shift of the Curie temperature and changes the characteristics of ϵ′ and tanδ. The structural, mechanical and dielectric properties of the BTEX ceramics were discussed in terms of microstructure and dopants contents.

010302 applied physicsMaterials scienceDopantScanning electron microscopeMineralogy02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsIonControl and Systems Engineeringvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCurie temperatureCeramicElectrical and Electronic EngineeringComposite material0210 nano-technologyElastic modulusIntegrated Ferroelectrics
researchProduct

SrTiO3-doping effect on dielectric and ferroelectric behavior of Na0.5Bi0.5 TiO3 ceramics

2018

Lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0–0.04) were synthesized by a conventional mixed-oxide technique. The microstructure study showed a dense structure, in good agreement with that of ab...

010302 applied physicsMaterials scienceDoping02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesFerroelectricityElectronic Optical and Magnetic Materialsvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramicComposite material0210 nano-technologyFerroelectrics
researchProduct

Preparation and dielectric properties of (Na 0.5 K 0.5 )NbO 3 ceramics with ZnO and CdO addition

2019

The sintering conditions, phase structure, and electrical properties of the ZnO and CdO doped (Na0.5K0.5)NbO3 (NKN) ceramics were investigated and discussed. All the samples were prepared by a solid state reaction method. The addition of 1 wt% CdO and ZnO as a sintering aid increases the density and lowering the sintering temperature. XRD analysis indicated perovskite structure with monoclinic symmetry. The investigated samples are good quality, the grains are well shaped without a glassy phase. The results of dielectric measurements revealed, that the dielectric properties of NKN based ceramics are stable in the wide temperature range.

010302 applied physicsMaterials scienceDopingSintering02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssodium potassium niobateChemical engineeringControl and Systems Engineeringdielectric propertiesvisual_artPhase (matter)0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicElectrical and Electronic Engineering0210 nano-technologySolid state sinteringIntegrated Ferroelectrics
researchProduct