Search results for "Optical Fibers"
showing 10 items of 107 documents
"Photonic lantern" spectral filters in multi-core fibre
2012
Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.
Theoretical prediction of structural, vibrational and NMR parameters of plastic optical fiber (POF) material precursors. Cis and trans perhydro- and …
2014
Abstract Density functional theory (DFT) prediction of cis and trans perhydro- and perfluoro-2-methylene-4,5-dimethyl-1,3-dioxolanes structure, supported by vibrational analysis and calculation of multinuclear isotropic nuclear magnetic resonance (NMR) shieldings and indirect spin–spin couplings (SSCCs) was performed. The performance of the used methodology was verified on 1,3-dioxolane selected as model compound. The structures of hydrogenated and fluorinated monomers of POF materials were calculated using B3LYP and BLYP density functionals combined with 6-311 ++ G(3df,2pd) basis set. The BLYP/6-311++G(3df,2pd) level of theory was suggested for vibrational analysis. Gauge independent atomi…
Wave dynamics and turbulence in multimode optical systems
2021
The subject of this thesis essentially focuses on the experimental and theoretical study of optical turbulence in different types of nonlinear media. The first part of the manuscript is devoted to the study of thermalization and condensation of optical waves during their propagation in graded-index multimode fibers. The analysis based on the wave turbulence theory reveals that the disorder inherent to light propagation in an optical fiber induces a significant acceleration of the process of optical thermalization, which can clarify the mechanism of certain regimes of spatial beam cleaning recently reported in the literature. We show experimentally that the optical field relaxes during its p…
Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths
2008
International audience; In this work, we report the experimental observation of a polarization attraction process which can occur in optical fibers at telecommunication wavelengths. More precisely, we have numerically and experimentally shown that a polarization attractor, based on the injection of two counter-propagating waves around 1.55 mu m into a 2-m long high nonlinear fiber, can transform any input polarization state into a unique well-defined output polarization state.
Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments
2008
International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…
Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers
2020
The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…
Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples
2008
International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…
Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading
2019
The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…
Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters
2012
International audience; A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From preforms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results fro…
Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors
2015
International audience; We study the performance of Optical Frequency Domain Reflectometry (OFDR) distributed temperature sensors using radiation resistant single-mode optical fibers. In situ experiments under 10 keV X-rays exposure up to 1 MGy( SiO 2 ) were carried out with an original setup that allows to investigate combined temperature and radiation effects on the sensors within a temperature range from 30 ° C to 250 ° C. Obtained results demonstrate that optical fiber sensors based on Rayleigh technique are almost unaffected by radiation up to the explored doses. We show that a pre-thermal treatment stabilize the sensor performance increasing the accuracy on temperature measurement fro…