Search results for "Optical and Magnetic Material"

showing 10 items of 4699 documents

Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors

2019

Abstract Hollow micro-/nanostructures and oxygen vacancies are highly desirable for supercapacitors due to high active surface area and outstanding electrochemical properties. In order to benefiting from the both effect, binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres were pioneering directly deposited via one kind thermal spray technology, named solution precursor thermal spray (SPTS) process. To our best knowledge, the rapid one-step SPTS route was firstly employed to synthesize and deposit NiCo2O4 films for supercapacitor applications. The CV data clearly demonstrated that the specific capacitances of more oxygen-deficient NiCo2O4 electrodes with hollow microsph…

010302 applied physicsSupercapacitorHorizontal scan rateNanostructureMaterials scienceProcess Chemistry and Technology02 engineering and technology021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences7. Clean energyCapacitanceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineering0103 physical sciencesElectrodeMaterials ChemistryCeramics and Composites[CHIM]Chemical Sciences0210 nano-technologyThermal sprayingCurrent densityCeramics International
researchProduct

Color centers in diamond as novel probes of superconductivity

2018

Magnetic imaging using color centers in diamond through both scanning and wide-field methods offers a combination of unique capabilities for studying superconductivity, for example, enabling accurate vector magnetometry at high temperature or high pressure, with spatial resolution down to the nanometer scale. The paper briefly reviews various experimental modalities in this rapidly developing nascent field and provides an outlook towards possible future directions.

010302 applied physicsSuperconductivityMaterials scienceField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerCondensed Matter - SuperconductivityDiamondFOS: Physical sciencesNanotechnologyengineering.materialCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSuperconductivity (cond-mat.supr-con)Magnetic imaginglawHigh pressure0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineering010306 general physicsImage resolution
researchProduct

Effect of surface disorder on the domain structure of PLZT ceramics

2017

ABSTRACTPb1-xLax(Zr0.65Ti0.35)1-x/4O3 (PLZT x/65/35) ceramics were studied by Piezoresponse Force Microscopy in order to understand the origin of domain structure as a function of La content. We show that the domain topology is mainly determined by the composition and grain size. The characteristic correlation length decreases with increasing La content, being sensitive also to the synthesis method. The behavior of the correlation length is linked to the macroscopic properties, showing a strong increase of disorder with La doping. The roughness exponent for the domain wall in PLZT 9/65/35 is close to 2/3 indicating 1D character of domain walls in relaxors.

010302 applied physicsSurface (mathematics)Materials scienceCondensed matter physicsDoping02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesGrain sizeElectronic Optical and Magnetic MaterialsDomain wall (magnetism)Piezoresponse force microscopyvisual_art0103 physical sciencesDomain (ring theory)Roughness exponentvisual_art.visual_art_mediumCeramic0210 nano-technologyFerroelectrics
researchProduct

Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

2009

010302 applied physicsSurface (mathematics)Materials sciencebusiness.industryScanning electron microscope02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsOptics0103 physical sciencesOptoelectronics0210 nano-technologybusinessPhysical Review B
researchProduct

Thermal oxidation of the intermetallic phases Al 8 Mo 3 and AlMo 3

2017

Abstract The thermal oxidation reactions of the intermetallic phases Al8Mo3 and AlMo3 were investigated and analyzed by ex-situ powder-x-ray diffraction (XRD), difference thermal analysis (DTA), thermogravimetry (TGA), and infrared spectroscopy (IR). The initial oxidation reactions in air were found to yield Al2O3 and AlMo3 in the case of Al8Mo3 (Tonset =725 °C), and MoO3 as well as Al8−xMo3 (Tonset =435 °C) for the pure intermetallic phase AlMo3, respectively. Thus, both intermetallic phases are coexisting in an equilibrium within a temperature range of 300 °C under oxidizing conditions. The formation of β-Al2(MoO4)3 followed the second oxidizing process of the respective minority componen…

010302 applied physicsThermal oxidationMaterials scienceInorganic chemistryAnalytical chemistryIntermetallicInfrared spectroscopy02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryThermogravimetryPhase (matter)0103 physical sciencesOxidizing agentMaterials ChemistryCeramics and CompositesPhysical and Theoretical Chemistry0210 nano-technologyThermal analysisJournal of Solid State Chemistry
researchProduct

A new technique for partial discharges measurement under DC periodic stress

2017

The aim of the present work is to recognize the type of defect in insulating materials employed in DC electrical systems. This analysis, under AC stress, is carried out by using the Phase Resolved method (PRPD). While, under constant voltage stress this method cannot be performed and measurements show complexities. In order to overcome these problems, a new technique is proposed, based on the application of a periodic continuous waveform. Simulation results, carried out by using a model based on a time-variable conductance of an air void defect, showed the PRPD pattern that can be obtain. Furthermore, compared to the constant DC stress, the measurement duration became lower and the discharg…

010302 applied physicsVoid (astronomy)Materials scienceHVDCElectronic Optical and Magnetic MaterialConductanceStress measurementMechanicsDC stre01 natural sciencesSpace chargeSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaPartial discharge0103 physical sciencesWaveformConstant voltagePRPD patternElectrical and Electronic Engineering010306 general physics
researchProduct

Composition dependence ofSi1−xGexsputter yield

2005

Sputtering yields have been measured for unstrained ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ $(x=0--1)$ alloys when bombarded with ${\mathrm{Ar}}^{+}$ ions within the linear cascade regime. Nonlinear S-shape dependence of the sputter yield as a function of the alloy composition has been revealed. The dependence is analyzed within the frameworks of the cascade theory conventionally accepted to be the most systematic to date theoretical approach in sputtering. In view of a linear composition dependence predicted for the sputter yield by the cascade theory adapted for polyatomic substrates, the nonlinearity observed in our experiments is shown to be related to the alloying effect on…

010302 applied physicsYield (engineering)Materials scienceDegree (graph theory)Polyatomic ionBinding energy02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface energyElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceSputtering0103 physical sciencesAtomAtomic physics0210 nano-technologyEnergy (signal processing)Physical Review B
researchProduct

Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration

2020

2D materials have recently demonstrated a strong potential for spintronic applications. This has been further reinforced by the discovery of ferromagnetic 2D layers. Nevertheless, the fragility of ...

010302 applied physics[PHYS]Physics [physics]Materials scienceSpintronicsNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTerm (time)FragilityFerromagnetismMagnet0103 physical sciencesMonolayerMaterials ChemistryElectrochemistry[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

2016

Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling…

010302 applied physicseducation.field_of_studyMaterials scienceAcoustics and UltrasonicsDielectric strengthCondensed matter physicsAnnealing (metallurgy)Population02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesShape parameterSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials0103 physical sciences0210 nano-technologyeducationLow voltageQuantum tunnellingWeibull distributionVoltageJournal of Physics D: Applied Physics
researchProduct

A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol.

2018

A stereoselective and electrocatalytic coupling reaction of isoeugenol has been reported for the first time in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/boron-doped diamond (BDD) electrode system. This particular C-C bond formation and diastereoselectivity is driven by a solvate interaction between the radical species and another isoeugenol molecule. Due to an electrocatalytic cycle, only understoichiometric amounts of charge are necessary. Since electric current is directly employed as the oxidant, the reaction is metal and reagent-free. In addition, the electrolysis can be conducted in a very simple undivided beaker-type cell under constant current conditions. Therefore, the protocol is …

010402 general chemistry01 natural sciencesCatalysisCoupling reactionlaw.inventionMetalchemistry.chemical_compoundlawMaterials ChemistryMoleculeElectrolysis010405 organic chemistryMetals and AlloysGeneral ChemistryCombinatorial chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventIsoeugenolchemistryvisual_artElectrodeCeramics and Compositesvisual_art.visual_art_mediumStereoselectivityChemical communications (Cambridge, England)
researchProduct