Search results for "Optical and Magnetic Material"
showing 10 items of 4699 documents
Definition of the thermographic regions of interest in cycling by using a factor analysis
2016
Abstract Research in exercise physiology using infrared thermography has increased in the last years. However, the definition of the Regions of Interest (ROIs) varies strongly between studies. Therefore, the aim of this study was to use a factor analysis approach to define highly correlated groups of thermographic ROIs during a cycling test. Factor analyses were performed based on the moment of measurement and on the variation of skin temperatures as a result of the cycling exercise. 19 male participants cycled during 45 min at 50% of their individual peak power output with a cadence of 90 rpm. Infrared thermography was used to measure skin temperatures in sixteen ROIs of the trunk and lowe…
Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information
2016
We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …
Using infrared thermography in order to compare laser and hybrid (laser plus MIG) welding processes
2009
International audience; In order to deepen the understanding of the differences between laser and laser-arc hybrid welding, comparisons were undertaken using thermography. The experiments were carried out for a T assembly of aluminium alloy plates. Modelling, based on the finite element method approach, was realized using IR temperature measurements and seam geometry. For a value of the power supply, depicted as a surface source in the hybrid case, agreement was found between simulated and measured temperatures. The arc power supply efficiency value is similar to the usually used value.
The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and co…
2011
Abstract While hybrid laser welding and coating processes involve a large number of physical phenomena, it is currently impossible to predict, for a given set of influencing factors, the shape of the molten zone and the history of temperature fields inside the parts. This remains true for complex processes, such as the hybrid laser/MIG welding process, which consists in combining a laser beam with a MIG torch. The gains obtained result essentially from the synergy of the associated processes: the stability of the process, the quality of the seam realized, and the productivity are increased. This article shows how, by means of a reduced number of experiments (8), it is possible to predict th…
The numerical simulation of heat transfer during a hybrid laser–MIG welding using equivalent heat source approach
2014
International audience; The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with …
Through-transmission laser welding of polymers – temperature field modeling and infrared investigation
2007
The purpose of the present study is to estimate the weldability of a polymeric material couple according to their thermal and optical properties. A first model based on Mie theory and Monte Carlo method describes the laser beam behavior in semi-transparent media and makes it possible to approximate the laser power distribution at the interface of the two materials. A second model based on finite element method permits the temperature field estimation into both parts to be welded. The results are validated by infrared thermography.
Diode laser welding of ABS: Experiments and process modeling
2009
International audience; The laser beam weldability of acrylonitrile/butadiene/styrene (ABS) plates is determined by combining both experimental and theoretical aspects. In modeling the process, an optical model is used to determine how the laser beam is attenuated by the first material and to obtain the laser beam profile at the interface. Using this information as the input data to a thermal model, the evolution of the temperature field within the two components can be estimated. The thermal model is based on the first principles of heat transfer and utilizes the temperature variation laws of material properties. Corroborating the numerical results with the experimental results, some impor…
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
2017
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples ( n = 27 ) were treated with threose to increase the collagen cross-linking whi…
Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques
2018
Magnetic skyrmions are swirling magnetic spin structures that could be used to build next-generation memory and logic devices. They can be characterized by a topological charge that describes how the spin winds around the core. The dynamics of skyrmions and antiskyrmions, which have opposite topological charges, are typically described by assuming a rigid core. However, this reduces the set of variables that describe skyrmion motion. Here we theoretically explore the dynamics of skyrmions and antiskyrmions in ultrathin ferromagnetic films and show that current-induced spin–orbit torques can lead to trochoidal motion and skyrmion–antiskyrmion pair generation, which occurs only for either the…
Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides.
2018
Well-defined heparin like oligosaccharides up to decasaccharides were synthesized. It was discovered for the first time that heparin oligosaccharides, as short as tetrasaccharides, can bind with the most toxic tau species, i.e., tau oligomers with nM KD. The binding significantly reduced the cellular uptake of toxic tau oligomers and protected the cells from tau oligomer induced cytotoxicity.