Search results for "Optical field"
showing 10 items of 46 documents
The limits of the rotating wave approximation in electromagnetic field propagation in a cavity
2005
We consider three two-level atoms inside a one-dimensional cavity, interacting with the electromagnetic field in the rotating wave approximation (RWA), commonly used in the atom-radiation interaction. One of the three atoms is initially excited, and the other two are in their ground state. We numerically calculate the propagation of the field spontaneously emitted by the excited atom and scattered by the second atom, as well as the excitation probability of the second and third atom. The results obtained are analyzed from the point of view of relativistic causality in the atom-field interaction. We show that, when the RWA is used, relativistic causality is obtained only if the integrations …
Thermodynamic approach of supercontinuum generation
2009
International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…
Accelerating wide-angle converging waves in the near field
2014
We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arran…
Scattering in Strong Magnetic Fields
1985
Publisher Summary This chapter discusses collision processes in the presence of a strong magnetic field. The chapter deals with the potential scattering in a magnetic field arising in connection with the problem of Bremsstrahlung (“free–free transitions”) of an electron in the field. An expression for the photoionization cross section of a one-electron (hydrogenic) system in a magnetic field is also presented. A different approach is required to the problem of ion–atom collisions in a magnetic field because the collision energy E is generally much greater than hωc. Within the two-state model, not only did the magnetic field modify the bound-state wave functions, but, more importantly, it in…
Generation of even harmonics of sub-THz radiation in bulk GaAs in the presence of a static electric field
2007
The static electric field effects on nonlinear carrier dynamics in low-doped GaAs bulk under the influence of an intense sub-terahertz field are studied by a three-dimensional multivalleys Monte Carlo simulation. The conversion efficiency is calculated by using the appropriate Maxwell equation for the propagation of an electromagnetic wave along a given direction in the medium. Production of odd and even harmonics due to the nonlinearity of the velocity-field relation is investigated.
Structure of the electromagnetic field around the free electron in nonrelativistic QED.
1991
We study, within the framework of nonrelativistic QED, the structure of the electromagnetic field in the neighborhood of a free spinless electron dressed by the interaction with the vacuum field. We introduce a suitable formalism that correlates electron position and field operators. The quantum average value obtained by applying correlated field operator to the dressed state gives the average value of the corresponding field quantity as a function of distance from the electron. The results obtained separately for the electric- and magnetic-field energy density around the particle display contributions that have quantum origin and that cancel in summing of the two, yielding the total energy…
Electromagnetic moments of quasi-stable particle
2010
We deal with the problem of assigning electromagnetic moments to a quasi-stable particle (i.e., a particle with mass located at particle's decay threshold). In this case, an application of a small external electromagnetic field changes the energy in a non-analytic way, which makes it difficult to assign definitive moments. On the example of a spin-1/2 field with mass $M_{*}$ interacting with two fields of masses $M$ and $m$, we show how a conventionally defined magnetic dipole moment diverges at $M_{*}=M+m$. We then show that the conventional definition makes sense only when the values of the applied magnetic field $B$ satisfy $|eB|/2M_{*}\ll|M_{*}-M-m|$. We discuss implications of these re…
Time-dependent Maxwell field operators and field energy density for an atom near a conducting wall
2009
We consider the time evolution of the electric and magnetic field operators for a two-level atom, interacting with the electromagnetic field, placed near an infinite perfectly conducting wall. We solve iteratively the Heisenberg equations for the field operators and obtain the electric and magnetic energy density operators around the atom (valid for any initial state). Then we explicitly evaluate them for an initial state with the atom in its bare ground state and the field in the vacuum state. We show that the results can be physically interpreted as the superposition of the fields propagating directly from the atom and the fields reflected on the wall. Relativistic causality in the field …
Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches
2006
International audience; In coherent homodyne apertureless scanning near-field optical microscopy (ASNOM) the background field cannot be fully suppressed because of the interference between the different collected fields, making the images difficult to interpret. We show that implementing the heterodyne version of ASNOM allows one to overcome this issue. We present a comparison between homodyne and heterodyne ASNOM through near-field analysis of gold nanowells, integrated waveguides, and a single evanescent wave generated by total internal reflection. The heterodyne approach allows for the control of the interferometric effect with the background light. In particular, the undesirable backgro…
Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber
2009
International audience; We report an experimental, numerical and theoretical study of the incoherent regime of supercontinuum generation in a two zero dispersion wavelengths fiber. By using a simple experimental setup, we show that the phenomenon of spectral broadening inherent to supercontinuum generation can be described as a thermalization process, which is characterized by an irreversible evolution of the optical field towards a thermal equilibrium state. In particular, the thermodynamic equilibrium spectrum predicted by the kinetic wave theory is characterized by a double peak structure, which has been found in quantitative agreement with the numerical simulations without adjustable pa…