Search results for "Optimal design."
showing 10 items of 113 documents
Regression analysis to design a solar thermal collector for occasional use
2020
Abstract Optimal design of a solar thermal system is necessary to minimize payback time and to diffuse renewable energy use for Domestic Hot Water production in residential areas. More accurate design is crucial in the case of seasonal or occasional use of the system; indeed, the standard criteria generally applied to a design system for continuous use, can lead to considerable over-sizing. To speed up the design phase and to help the planner in the identification of the best solution without any complex evaluation or long computational time, it would be interesting to have available a simpler method than the standard procedures, but one that is reliable and accurate for the evaluation of t…
A double-shell design approach for multiobjective optimal design of microgrids
2010
This work develops a new double shell approach to optimal design for multi-objective optimally managed systems. The cost of each design solution can be defined by the evaluation of operational issues and capital costs. In most systems, the correct definition of operational issues can be deduced by means of the solution of a multi-objective optimization problem. The evaluation of each design solution must thus be deduced using the outcome of a multi-objective optimization run, namely a Pareto hyper-surface in the n-dimensional space of operational objectives. In the literature, the design problem is usually solved by considering a single objective formulation of the operational issue. In thi…
Determination of a pre-heating sequence for the DONES Target Assembly
2021
Abstract Within the activities promoted by the EUROfusion consortium in support of the design and construction of the DEMO Oriented NEutron Source (DONES), a mock-up of its Target Assembly (TA), based on the configuration with a “bayonet” Back-Plate (BP) and available at ENEA Brasimone labs, is being adopted for the execution of experimental activities aiming at the validation of specific aspects of the target design. Despite the “integral”-TA concept is the current reference, experimental tests concerning the TA pre-heating phase are not significantly affected by the TA concept and are still representative even though conducted on the bayonet-TA concept. Indeed, the main objective of the p…
A generalized model of human body radiative heat exchanges for optimal design of indoor thermal comfort conditions
2018
Abstract Human thermal sensation depends heavily on radiative exchanges between the human body and the surrounding environment. Because these exchanges play a crucial role in the thermal balance of the human body, about 35% of the process, human thermal sensation should draw the attention of planners when designing both indoor environments and equipment. The present study aims to contribute to this field by proposing a procedure for delineating the optimal comfort conditions for occupants in most of the articulate and realistic configurations of actual indoor environments. Specifically, this procedure enables accurate assessment of the radiant field surrounding a subject in a given indoor r…
Comparison between Entropy and Resilience as Indirect Measures of Reliability in the Framework of Water Distribution Network Design
2014
Abstract The aim of this paper is to investigate which between the entropy and resilience indices represents a better indirect measure of reliability in the framework of water distribution network design. The methodology adopted consisted of (a) multi-objective optimizations performed in order to minimize costs and maximize reliability, expressed by means of one of the indirect indices at time; (b) retrospective performance assessment of the solutions of Pareto fronts obtained. Two case studies of different topological complexity were considered. Results showed that indices based on energetic concepts (resilience and modified resilience) represent a better compact estimate of reliability th…
Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures
2017
In this paper, the use of a tuned liquid column damper (TLCD) as a cost-effective means to control the seismic response of a base-isolated structure is studied. A straightforward direct approach for the optimal design of such a device is proposed, considering a white noise model of the base excitation. On this base, a direct optimization procedure of the TLCD design parameters is performed and optimal design charts are presented as a ready-to-use practical design tool. Comparison with the optimal parameters obtained considering a classical iterative statistical linearization technique proves the reliability of the proposed approach. The performance of the base-isolated TLCD-controlled struc…
Shakedown optimal design of reinforced concrete structures by evolution strategies
2000
Approaches the shakedown optimal design of reinforced concrete (RC) structures, subjected to variable and repeated external quasi‐static actions which may generate the well‐known shakedown or adaptation phenomenon, when constraints are imposed on deflection and/or deformation parameters, in order to simulate the limited flexural ductility of the material, in the presence of combined axial stress and bending. Within this context, the classical shakedown optimal design problem is revisited, using a weak upper bound theorem on the effective plastic deformations. For this problem a new computational algorithm, termed evolution strategy, is herein presented. This algorithm, derived from analogy …
Seismic shakedown design of frames based on a probabilistic approach
2014
The present study concerns the optimal design of elastic perfectly plastic structures subjected to a combination of fixed and seismic loads. In particular, plane frames are considered and suitable measures of the beam element cross sections are chosen as design variables. The optimal design is required to behave in a purely elastic manner when subjected just to the fixed load and to have the capability to eventually shakedown when simultaneously subjected to fixed and seismic loads. Due to the natural uncertainness related to the definition of the seismic load history, a new probabilistic approach is proposed, consisting into two subsequent search steps. At first a suitably chosen large num…
Impeller optimization in crossflow hydraulic turbines
2021
Crossflow turbines represent a valuable choice for energy recovery in aqueducts, due to their constructive simplicity and good efficiency under variable head jump conditions. Several experimental and numerical studies concerning the optimal design of crossflow hydraulic turbines have already been proposed, but all of them assume that structural safety is fully compatible with the sought after geometry. We show first, with reference to a specific study case, that the geometry of the most efficient impeller would lead shortly, using blades with a traditional circular profile made with standard material, to their mechanical failure. A methodology for fully coupled fluid dynamic and mechanical …
Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions
2009
Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general elliptic boundary value problems with Dirichlet boundary conditions. Numerical experiments are also included peerReviewed