Search results for "Optogenetics"

showing 10 items of 34 documents

Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network

2018

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine al…

0301 basic medicineCell signalingSensory Receptor CellsInterneuronDopamineSensationNeuropeptideOptogeneticsBiologyReceptors DopamineAnimals Genetically Modified03 medical and health sciencesChannelrhodopsinsDopamineNeural PathwaysBiological neural networkmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsGeneral NeuroscienceNeuropeptidesdigestive oral and skin physiologyDopaminergicOptogenetics030104 developmental biologymedicine.anatomical_structureFoodDopamine receptorCalciumNeuroscienceLocomotionmedicine.drugNeuron
researchProduct

2020

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dop…

0301 basic medicineGeneral Immunology and MicrobiologyGeneral NeuroscienceDopaminergicStimulationInflammationOptogeneticsBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences030104 developmental biology0302 clinical medicineIn vivoStereotaxic techniquemedicinePremovement neuronal activitymedicine.symptomSignal transductionGeneral Agricultural and Biological SciencesNeuroscience030217 neurology & neurosurgeryPLOS Biology
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex.

2019

In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortic…

0301 basic medicineMaleCognitive NeurosciencePopulationNeuroscience (miscellaneous)OptogeneticsSomatosensory systemInhibitory postsynaptic potentiallcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineThalamusexcitation inhibition balancedirection selectivitymedicineAnimalsGABAergic Neuronseducationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchNeuronseducation.field_of_studyAfferent PathwaysNeocortexGAD2NTSR1ChemistryNeural InhibitionSomatosensory CortexBarrel cortexSensory Systemslayer 6030104 developmental biologymedicine.anatomical_structurenervous systemTouch PerceptionVibrissaeExcitatory postsynaptic potentialGABAergicFemaleNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in neural circuits
researchProduct

Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes

2018

Extinction of fear responses is critical for adaptive behavior and deficits in this form of safety learning are hallmark of anxiety disorders. However, the neuronal mechanisms that initiate extinction learning are largely unknown. Here we show, using single-unit electrophysiology and cell-type specific fiber photometry, that dopamine neurons in the ventral tegmental area (VTA) are activated by the omission of the aversive unconditioned stimulus (US) during fear extinction. This dopamine signal occurred specifically during the beginning of extinction when the US omission is unexpected, and correlated strongly with extinction learning. Furthermore, temporally-specific optogenetic inhibition o…

0301 basic medicineMaleMouseExtinction PsychologicalPhotometry0302 clinical medicineFear conditioningBiology (General)extinctionGeneral NeuroscienceQRElectroencephalographyGeneral MedicineFearmusculoskeletal systemhumanitiesVentral tegmental areamedicine.anatomical_structureMedicineAnxietymedicine.symptomdopaminePsychologygeographic locationsmedicine.drugResearch ArticleQH301-705.5ScienceOptogeneticsUnconditioned stimulussafety learningGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesextinction ; fear conditioning ; safety learning ; dopamineDopaminemedicineAvoidance LearningAnimalsLearningddc:610General Immunology and MicrobiologyDopaminergic NeuronsVentral Tegmental AreaExtinction (psychology)social sciencesfear conditioningMice Inbred C57BLOptogeneticsElectrophysiology030104 developmental biologyNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

2016

During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during t…

0301 basic medicineMultidisciplinaryCognitive mapComputer scienceHippocampusSensory systemHippocampal formationOptogenetics03 medical and health sciencesElectrophysiology030104 developmental biology0302 clinical medicineNeuroplasticitySpatial learningNeuroscience030217 neurology & neurosurgeryPLOS ONE
researchProduct

Optogenetics: a new method for the causal analysis of neuronal networks in vivo

2012

Abstract The causal analysis of neuronal network function requires selective manipulations of ge­netically defined neuronal subpopulations in the intact living brain. Here, we highlight the method of optogenetics, which meets those needs. We cover methodological aspects, limitations, and practical applications in the field of neurosciences. The fundamentals of optogenetics are light-sensitive transmembrane channels and light-driven ion pumps, which can be genetically encoded, without requir­ing the application of exogenous cofactors. These opsins are expressed in neurons by means of viral gene transfer and cell-specific promoters. Light for stimulation can be non- or minimally invasively de…

0301 basic medicineOpsinDepolarizationOptogeneticsBiologyHyperpolarization (biology)NeurophysiologyGenetically modified organism03 medical and health sciences030104 developmental biology0302 clinical medicineBiological neural networkPremovement neuronal activityNeuroscience030217 neurology & neurosurgerye-Neuroforum
researchProduct

Octopamine Shifts the Behavioral Response From Indecision to Approach or Aversion in Drosophila melanogaster

2018

Animals must make constant decisions whether to respond to external sensory stimuli or not to respond. The activation of positive and/or negative reinforcers might bias the behavioral response towards approach or aversion. To analyze whether the activation of the octopaminergic neurotransmitter system can shift the decision between two identical odor sources, we active in Drosophila melanogaster different sets of octopaminergic neurons using optogenetics and analyze the choice of the flies using a binary odor trap assay. We show that the release of octopamine from a set of neurons and not acetylcholine acts as positive reinforcer for one food odor source resulting in attraction. The activat…

0301 basic medicineTβhCognitive NeuroscienceSensory systemOptogeneticsPositive Reinforcerdecision makinglcsh:RC321-57103 medical and health sciencesBehavioral Neurosciencechemistry.chemical_compound0302 clinical medicineethanol attractionoctopaminefood odoraversionNeurotransmitterlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchbiologyOctopamine (drug)biology.organism_classificationAttraction030104 developmental biologyNeuropsychology and Physiological PsychologychemistryOdorDrosophila melanogasterNeuroscience030217 neurology & neurosurgeryNeuroscienceattractionFrontiers in Behavioral Neuroscience
researchProduct

Mechanisms Underlying Memory Consolidation by Adult-Born Neurons During Sleep

2020

The mammalian hippocampus generates new neurons that incorporate into existing neuronal networks throughout the lifespan, which bestows a unique form of cellular plasticity to the memory system. Recently, we found that hippocampal adult-born neurons (ABNs) that were active during learning reactivate during subsequent rapid eye movement (REM) sleep and provided causal evidence that ABN activity during REM sleep is necessary for memory consolidation. Here, we describe the potential underlying mechanisms by highlighting distinct characteristics of ABNs including decoupled firing from local oscillations and ability to undergo profound synaptic remodeling in response to experience. We further di…

0301 basic medicinehippocampusMini Reviewtheta oscillationHippocampusEngramBiologyHippocampal formationOptogeneticslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineFear conditioningoptogeneticslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrysynaptic plasticityNeurogenesismemory consolidation030104 developmental biologyCellular NeuroscienceSynaptic plasticitycalcium-imagingMemory consolidationREM sleepadult-neurogenesisNeuroscience030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour

2016

The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cell…

0301 basic medicinemedicine.medical_specialtyScienceGeneral Physics and AstronomyBiologyStimulus (physiology)OptogeneticsGeneral Biochemistry Genetics and Molecular BiologyArticleAnimals Genetically Modified03 medical and health sciencesAnterior pituitaryInternal medicinemedicineZebrafish larvaeAvoidance LearningEndocrine systemAnimalsCorticotrophsZebrafishQLMultidisciplinaryQGeneral ChemistryCorticotroph CellOptogenetics030104 developmental biologyEndocrinologymedicine.anatomical_structureCorticotropic cellNeuroscienceLocomotionStress PsychologicalHormone
researchProduct