Search results for "Order theory"

showing 10 items of 150 documents

Asymptotics for the Amitsur's Capelli - Type Polynomials and Verbally Prime PI-Algebras

2006

We consider associativePI-algebras over a field of characteristic zero. The main goal of the paper is to prove that the codimensions of a verbally prime algebra [11] are asymptotically equal to the codimensions of theT-ideal generated by some Amitsur's Capelli-type polynomialsEM,L* [1]. We recall that two sequencesan,bnare asymptotically equal, and we writean≃bn,if and only if limn→∞(an/bn)=1.In this paper we prove that\(c_n \left( {M_k \left( G \right)} \right) \simeq c_n \left( {E_{k^2 ,k^2 }^ * } \right) and c_n \left( {M_{k,l} \left( G \right)} \right) \simeq c_n \left( {E_{k^2 + l^2 ,2kl}^ * } \right) \)% MathType!End!2!1!, whereG is the Grassmann algebra. These results extend to all v…

Discrete mathematicsJacobson RadicalGeneral MathematicsPolynomial IdentityZero (complex analysis)Associative AlgebraField (mathematics)Type (model theory)Prime (order theory)Young TableauYoung DiagramPiAlgebra over a fieldExterior algebraMathematics
researchProduct

A Motzkin filter in the Tamari lattice

2015

The Tamari lattice of order n can be defined on the set T n of binary trees endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we restrict our attention to the subset M n of Motzkin trees. This set appears as a filter of the Tamari lattice. We prove that its diameter is 2 n - 5 and that its radius is n - 2 . Enumeration results are given for join and meet irreducible elements, minimal elements and coverings. The set M n endowed with an order relation based on a restricted rotation is then isomorphic to a ranked join-semilattice recently defined in Baril and Pallo (2014). As a consequence, we deduce an upper bound for the rotation distan…

Discrete mathematicsMathematics::CombinatoricsBinary tree010102 general mathematicsLattice (group)0102 computer and information sciences[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesUpper and lower boundsTheoretical Computer ScienceCombinatoricsJoin and meet010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Discrete Mathematics and CombinatoricsOrder (group theory)Ideal (order theory)0101 mathematicsFilter (mathematics)Tamari latticeComputingMilieux_MISCELLANEOUSMathematics
researchProduct

A unified Pietsch domination theorem

2008

In this paper we prove an abstract version of Pietsch's domination theorem which unify a number of known Pietsch-type domination theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators. A final result shows that Pietsch-type dominations are totally free from algebraic conditions, such as linearity, multilinearity, etc.

Discrete mathematicsMathematics::Functional AnalysisDomination analysisApplied MathematicsLinear operatorsBanach spacePietsch domination theoremFunctional Analysis (math.FA)Linear mapMathematics - Functional AnalysisBanach spacesFOS: MathematicsIdeal (order theory)Algebraic numberAbsolutely summing mappingsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Fixed points and completeness on partial metric spaces

2015

Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…

Discrete mathematicsNumerical AnalysisPartial metric 0-completeneControl and OptimizationAlgebra and Number TheoryPartial metric spaceInjective metric spaceOrdered partial metric spaceEquivalence of metricsConvex metric spaceIntrinsic metricMetric spaceSettore MAT/05 - Analisi MatematicaSuzuki fixed point theoremCompleteness (order theory)Metric (mathematics)Discrete Mathematics and CombinatoricsMetric mapFixed and common fixed pointAnalysisMathematicsMiskolc Mathematical Notes
researchProduct

On a Class of Generalized Nilpotent Groups

2002

AbstractWe explore the class B of generalized nilpotent groups in the universe c[formula] of all radical locally finite groups satisfying min-p for every prime p. We obtain that this class is the natural generalization of the class of finite nilpotent groups from the finite universe to the universe c[formula]. Moreover, the structure of B-groups is determined explicitly. It is also shown that B is a subgroup-closed c[formula]-formation and that in every c[formula]-group the Fitting subgroup is the unique maximal normal B-subgroup.

Discrete mathematicsPure mathematicsClass (set theory)NilpotentMathematics::Group TheoryAlgebra and Number TheoryGeneralizationStructure (category theory)Nilpotent groupCentral seriesFitting subgroupPrime (order theory)MathematicsJournal of Algebra
researchProduct

The maximal coefficient of ternary cyclotomic polynomials with one free prime

2014

A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr, with p, q and r distinct odd primes. Let M(p, q) be the maximum (in absolute value) coefficient appearing in the polynomial family Φpqr(x) with p < q < r, p and q fixed. Here a stronger version of the main conjecture of Gallot, Moree and Wilms regarding M(p, q) is established. Furthermore it is shown that there is an algorithm to compute M(p): = max {M(p, q): q > p}. Our methods are the most geometric used so far in the study of ternary cyclotomic polynomials.

Discrete mathematicsReciprocal polynomialPolynomialAlgebra and Number TheoryAbsolute value (algebra)Ternary operationCyclotomic polynomialPrime (order theory)Mathematics
researchProduct

Completeness number of families of subsets of convergence spaces

2016

International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…

Discrete mathematics[ MATH ] Mathematics [math]CompletenessClass (set theory)Complete partial orderCompactness010102 general mathematicsBoundary (topology)Characterization (mathematics)01 natural sciences010101 applied mathematicsConvergence theoryCompact spaceCardinalityCompleteness (order theory)Countable setGeometry and Topology0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

On second maximal subgroups of Sylow subgroups of finite groups

2011

Abstract Finite groups in which the second maximal subgroups of the Sylow p -subgroups, p a fixed prime, cover or avoid the chief factors of some of its chief series are completely classified.

Discrete mathematicsp-groupAlgebra and Number TheoryComputer Science::Neural and Evolutionary ComputationMathematics::History and OverviewSylow theoremsChief seriesPhysics::History of PhysicsPrime (order theory)Physics::Popular PhysicsMathematics::Group TheoryMaximal subgroupLocally finite groupCover (algebra)MathematicsJournal of Pure and Applied Algebra
researchProduct

A Gasless Reservoir Solution for Electro-Hydraulic Compact Drives with Two Prime Movers

2020

Abstract Due to an increased focus on improving the energy efficiency and compactness of hydraulic linear actuators, the electro-hydraulic compact drive (ECD) has received increased attention lately. In this study the ECD consists of variable-speed electric motors and fixed-displacement pumps, which are directly connected to the cylinder, thus controlling the linear motion in a throttleless manner. Furthermore, ECDs are self-contained systems, i.e. based on a fully enclosed oil circuit, in order to avoid external contamination and air to enter the system and to increase system compactness. Conventionally a low-pressure gas-loaded accumulator is used as an oil reservoir to compensate for the…

Electric motorComputer scienceMechanical engineeringActuatorElectro hydraulicPrime (order theory)
researchProduct

Multicenter solutions in Eddington-inspired Born-Infeld gravity

2020

We find multicenter (Majumdar-Papapetrou type) solutions of Eddington-inspired Born-Infeld gravity coupled to electromagnetic fields governed by a Born-Infeld-like Lagrangian. We construct the general solution for an arbitrary number of centers in equilibrium and then discuss the properties of their one-particle configurations, including the existence of bounces and the regularity (geodesic completeness) of these spacetimes. Our method can be used to construct multicenter solutions in other theories of gravity.

Electromagnetic fieldHigh Energy Physics - TheoryGravity (chemistry)Física-Modelos matemáticosPhysics and Astronomy (miscellaneous)GeodesicFOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum CosmologyCompleteness (order theory)0103 physical scienceslcsh:QB460-466Física matemáticalcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Mathematical physicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Lagrangian
researchProduct