Search results for "Order theory"
showing 10 items of 150 documents
Asymptotics for the Amitsur's Capelli - Type Polynomials and Verbally Prime PI-Algebras
2006
We consider associativePI-algebras over a field of characteristic zero. The main goal of the paper is to prove that the codimensions of a verbally prime algebra [11] are asymptotically equal to the codimensions of theT-ideal generated by some Amitsur's Capelli-type polynomialsEM,L* [1]. We recall that two sequencesan,bnare asymptotically equal, and we writean≃bn,if and only if limn→∞(an/bn)=1.In this paper we prove that\(c_n \left( {M_k \left( G \right)} \right) \simeq c_n \left( {E_{k^2 ,k^2 }^ * } \right) and c_n \left( {M_{k,l} \left( G \right)} \right) \simeq c_n \left( {E_{k^2 + l^2 ,2kl}^ * } \right) \)% MathType!End!2!1!, whereG is the Grassmann algebra. These results extend to all v…
A Motzkin filter in the Tamari lattice
2015
The Tamari lattice of order n can be defined on the set T n of binary trees endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we restrict our attention to the subset M n of Motzkin trees. This set appears as a filter of the Tamari lattice. We prove that its diameter is 2 n - 5 and that its radius is n - 2 . Enumeration results are given for join and meet irreducible elements, minimal elements and coverings. The set M n endowed with an order relation based on a restricted rotation is then isomorphic to a ranked join-semilattice recently defined in Baril and Pallo (2014). As a consequence, we deduce an upper bound for the rotation distan…
A unified Pietsch domination theorem
2008
In this paper we prove an abstract version of Pietsch's domination theorem which unify a number of known Pietsch-type domination theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators. A final result shows that Pietsch-type dominations are totally free from algebraic conditions, such as linearity, multilinearity, etc.
Fixed points and completeness on partial metric spaces
2015
Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…
On a Class of Generalized Nilpotent Groups
2002
AbstractWe explore the class B of generalized nilpotent groups in the universe c[formula] of all radical locally finite groups satisfying min-p for every prime p. We obtain that this class is the natural generalization of the class of finite nilpotent groups from the finite universe to the universe c[formula]. Moreover, the structure of B-groups is determined explicitly. It is also shown that B is a subgroup-closed c[formula]-formation and that in every c[formula]-group the Fitting subgroup is the unique maximal normal B-subgroup.
The maximal coefficient of ternary cyclotomic polynomials with one free prime
2014
A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr, with p, q and r distinct odd primes. Let M(p, q) be the maximum (in absolute value) coefficient appearing in the polynomial family Φpqr(x) with p < q < r, p and q fixed. Here a stronger version of the main conjecture of Gallot, Moree and Wilms regarding M(p, q) is established. Furthermore it is shown that there is an algorithm to compute M(p): = max {M(p, q): q > p}. Our methods are the most geometric used so far in the study of ternary cyclotomic polynomials.
Completeness number of families of subsets of convergence spaces
2016
International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…
On second maximal subgroups of Sylow subgroups of finite groups
2011
Abstract Finite groups in which the second maximal subgroups of the Sylow p -subgroups, p a fixed prime, cover or avoid the chief factors of some of its chief series are completely classified.
A Gasless Reservoir Solution for Electro-Hydraulic Compact Drives with Two Prime Movers
2020
Abstract Due to an increased focus on improving the energy efficiency and compactness of hydraulic linear actuators, the electro-hydraulic compact drive (ECD) has received increased attention lately. In this study the ECD consists of variable-speed electric motors and fixed-displacement pumps, which are directly connected to the cylinder, thus controlling the linear motion in a throttleless manner. Furthermore, ECDs are self-contained systems, i.e. based on a fully enclosed oil circuit, in order to avoid external contamination and air to enter the system and to increase system compactness. Conventionally a low-pressure gas-loaded accumulator is used as an oil reservoir to compensate for the…
Multicenter solutions in Eddington-inspired Born-Infeld gravity
2020
We find multicenter (Majumdar-Papapetrou type) solutions of Eddington-inspired Born-Infeld gravity coupled to electromagnetic fields governed by a Born-Infeld-like Lagrangian. We construct the general solution for an arbitrary number of centers in equilibrium and then discuss the properties of their one-particle configurations, including the existence of bounces and the regularity (geodesic completeness) of these spacetimes. Our method can be used to construct multicenter solutions in other theories of gravity.