Search results for "Ostas"
showing 10 items of 874 documents
Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues
2021
The macroscopic and microscopic anatomy of the oral cavity is complex and unique in the human body. Soft-tissue structures are in close interaction with mineralized bone, but also dentine, cementum and enamel of our teeth. These are exposed to intense mechanical and chemical stress as well as to dense microbiologic colonization. Teeth are susceptible to damage, most commonly to caries, where microorganisms from the oral cavity degrade the mineralized tissues of enamel and dentine and invade the soft connective tissue at the core, the dental pulp. However, the pulp is well-equipped to sense and fend off bacteria and their products and mounts various and intricate defense mechanisms. The fron…
Hepatitis C Virus Eradication by Direct Antiviral Agents Improves Carotid Atherosclerosis in patients with Severe Liver Fibrosis.
2018
Abstract BACKGROUND AND AIM: Recent studies suggest an association between HCV infection and cardiovascular damage, including carotid atherosclerosis, with a possible effect of HCV clearance on cardiovascular outcomes. We aimed to examine whether HCV eradication by direct antiviral agents (DAA) improves carotid atherosclerosis in HCV-infected patients with advanced fibrosis/compensated cirrhosis. MATERIALS AND METHODS: One hundred eighty-two consecutive HCV patients with advanced fibrosis or compensated cirrhosis were evaluated by virological, anthropometric and metabolic measurements. All patients underwent DAA-based antiviral therapy according to AISF/EASL guidelines. Intima-media thickne…
Repurposing of Drugs Targeting YAP-TEAD Functions
2018
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be rele…
Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling.
2018
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A po…
General Aspects of Metal Ions as Signaling Agents in Health and Disease
2020
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction—the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also …
Tissue factor at the crossroad of coagulation and cell signaling
2018
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF?s activities on cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G-protein coupled receptors. Additional coreceptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switchedbetween it…
Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.
2018
Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…
Single cell RNAseq provides a molecular and cellular cartography of changes to the human endometrium through the menstrual cycle
2018
In a human menstrual cycle, the endometrium undergoes remodeling, shedding, and regeneration which are driven by substantial gene expression changes in the underlying cellular hierarchy. Despite its importance in human fertility and regenerative biology, mechanistic understanding of this unique type of tissue homeostasis remains rudimentary. Here, we characterized the transcriptomic transformation of human endometrium at single cell resolution, dissecting multidimensional cellular heterogeneity of the tissue across the entire natural menstrual cycle. We analyzed 6 endometrial cell types, including a previously uncharacterized ciliated epithelial cell type, during four major phases of endome…
Autophagy in the pathogenesis of ankylosing spondylitis
2016
The pathogenesis of ankylosing spondylitis (AS) is not well understood, and treatment options have met with limited success. Autophagy is a highly conserved mechanism of controlled digestion of damaged organelles within a cell. It helps in the maintenance of cellular homeostasis. The process of autophagy requires the formation of an isolation membrane. They form double-membraned vesicles called “autophagosomes” that engulf a portion of the cytoplasm. Beyond the role in maintenance of cellular homeostasis, autophagy has been demonstrated as one of the most remarkable tools employed by the host cellular defense against bacteria invasion. Autophagy also affects the immune system and thus is im…
Tc17 biology and function: Novel concepts
2020
Research over the past years has provided increasing understanding about IL-17-producing CD8+ T cells termed Tc17 or IL-17+ CD8+ T cells, their distribution and role in a range of diverse immune processes. These comprise resistance to pathogens and tissue homeostasis, but also contribution to autoimmunity and cancer, as well as involvement in gut inflammation, lung diseases and graft-versus-host-disease. Tc17 cells are regulated by unique differentiation mechanisms distinguishing them from other IL-17-producing T cells, including Th17, mucosal-associated invariant T cells, and γδ17 T cells, thus ensuring their specific function in immune responses. Here, we review recent advances in underst…