Search results for "Osteoblast"
showing 10 items of 152 documents
Characterization and osteogenic activity of a silicatein/biosilica-coated chitosan-graft-polycaprolactone.
2014
Several attempts have been made in the past to fabricate hybrid materials that display the complementary properties of the polyester polycaprolactone (PCL) and the polysaccharide chitosan (CHS) for application in the field of bone regeneration and tissue engineering. However, such composites generally have no osteogenic activity per se. Here we report the synthesis of a chitosan-graft-polycaprolactone (CHS-g-PCL) and its subsequent characterization, including crystallinity, chemical structure and thermal stability. Upon surface-functionalization of CHS-g-PCL with osteogenic biosilica via the surface-immobilized enzyme silicatein, protein adsorption, surface morphology and wettability were a…
Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods.
2009
[EN] Collagen, as the major structural protein of the extracellular matrix in animals, is a versatile biomaterial of great interest in various engineering applications. Electrospun nanofibers of collagen are regarded as very promising materials for tissue engineering applications because they can reproduce the morphology of the natural bone but have as a drawback a poor structural consistency in wet conditions. In this paper, a comparative study between the performance of different cross-linking methods such as a milder enzymatic treatment procedure using transglutaminase, the use of N-[3-(dimethylamino)propyl]-N¿-ethylcarbodiimide hydrochloride/ N-hydroxysuccinimide, and genipin, and the u…
Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications.
2018
Abstract An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550 °C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with mic…
Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures
2019
In this paper, the effect of femtosecond laser nanotexturing of surfaces of Ti6Al4V and Zr implants on their biological compatibility is presented and discussed. Highly regular and homogeneous nanostructures with sub-micrometer period were imprinted on implant surfaces. Surfaces were morphologically and chemically investigated by SEM and XPS. HDFa cell lines were used for toxicity and cell viability tests, and subcutaneous implantation was applied to characterize tissue response. HDFa proliferation and in vivo experiments evidenced the strong influence of the surface topography compared to the effect of the surface elemental composition (metal or alloy). The effect of protein adsorption fro…
The effect of extracellular matrix proteins on the cellular response of HUVECS and HOBS after covalent immobilization onto titanium
2014
Biomimetic surface modifications are regarded as promising approach to stimulate cellular behavior at the interface of implant materials. Aim of the study was an evaluation of the cellular response of human umbilical cord cells (HUVECS) and human osteoblasts (HOBS) on titanium covalently coated with the extracellular matrix (ECM) proteins fibrinogen, collagen, laminin, and osteopontin. For the surface modification, titanium discs were first amino-functionalized by plasma polymerization of allylamine. The ECM protein conjugation was performed using the linker molecule α, ω-bis-N-hydroxysuccinimide polyethylene glycol (Di-NHS linker). For surface characterization, infrared spectroscopy and fl…
Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and prol…
2019
Target of this work was to prepare a RGDC functionalized hybrid biomaterial via TIPS technique to achieve a more efficient control of osteoblast adhesion and diffusion on the three-dimensional (3D) scaffolds. Starting from a crystalline poly(l-lactic acid) (PLLA) and an amorphous alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-d,l-aspartamide-graft-polylactic acid (PHEA-EDA-g-PLA) copolymer, blend scaffolds were characterized by an appropriate porosity and pore interconnection. The PHEA-EDA-PLA interpenetration with PLLA improved hydrolytic susceptibility of hybrid scaffolds. The presence of free amino groups on scaffolds allowed to tether the cyclic RGD peptide (RGDC) via Michael…
In vitro preliminary study of osteoblast response to surface roughness of titanium discs and topical application of melatonin
2014
Objectives: To observe human osteoblast behavior cultured in vitro on titanium discs (Ti) in relation to surface roughness and melatonin application. Study Design: Human osteoblasts (MG-63) were cultured on 60 Ti6Al4V discs divided into three groups: Group I: discs treated with dual acid etching; Group II dual acid etching and blasting with calcium phosphate particles; Group III (control) machined discs. Surface roughness and topography of the discs were examined with scanning electron microscope (SEM) and confocal laser scanning electron microscope( CLSM). Osteoblast adhesion, proliferation and cell morphology were determined by means of fluorescence microscopy with Image-Pro Plus software…
The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelia…
2010
The survival and functioning of a bone biomaterial upon implantation requires a rapidly forming and stably functioning vascularization that connects the implant to the recipient. We have previously shown that human microcapillary endothelial cells (HDMEC) and primary human osteoblast cells (HOS) in coculture on various 3-D bone biomaterial scaffolds rapidly distribute and self-assemble into a morphological structure resembling bone tissue. Endothelial cells form microcapillary-like structures containing a lumen and these were intertwined between the osteoblast cells and the biomaterial. This tissue-like self-assembly occurred in the absence of exogenously added angiogenic stimuli or artific…
Interactions between cells and titanium surfaces.
2002
The interaction between cells and implant materials is determined by the surface structure and/or surface composition of the material. In the past years, titanium and titanium alloys have proved their superiority over other implant materials in many clinical applications. This predominant behaviour is caused by a dense passive oxide layer which forms within milliseconds in oxidizing media. Titanium dioxide layers of 100 nm thickness were produced on the surface of cp-titanium grade 2, and on an experimental alloy of high vanadium content (Ti1.5Al25V) as a harmful control. The layers were produced by thermal and anodic oxidation and by coating by means of the sol-gel process. The resulting o…
Bioengineered human bone tissue using autogenous osteoblasts cultured on different biomatrices
2003
Surgical treatment of critical-size posttraumatic bone defects is still a challenging problem, even in modern bone and joint surgery. Progress in cellular and molecular biology during the last decade now permits novel approaches in bone engineering. Recent conceptual and technical advances have enabled the use of mitotically expanded, bone-derived cells as a therapeutic approach for tissue repair. Using three different tissue carrier systems, we successfully cultivated human osteoblasts in a newly developed perfusion chamber. We studied cell proliferation and the expression of osteocalcin, osteopontin, bone morphogenetic protein-2A, alkaline phosphatase, and vascular endothelial growth fact…