Search results for "Overtone"

showing 4 items of 34 documents

Raman spectroscopy of formic acid and its dimers isolated in low temperature argon matrices

2009

Raman spectroscopy combined with matrix isolation technique was employed to study formic acid monomer and its dimers. Nine fundamentals of the HCOOH monomer were identified. Additionally, the OH torsion overtone is observed and it is engaged in Fermi resonance with the δCOH mode. Several bands of the cyclic (C2h) dimer were identified and assigned. The less stable open form (Cs) of the dimer was also present in the experiment. Three intermolecular modes for the cyclic and one mode for the open dimer were found in the low frequency region. The experimental studies were supported by harmonic and anharmonic DFT calculations.

Formic acidDimerOvertoneIntermolecular forceMatrix isolationAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_compoundsymbols.namesakeMonomerchemistryPhysics::Atomic and Molecular ClusterssymbolsPhysical chemistryCondensed Matter::Strongly Correlated ElectronsFermi resonancePhysics::Chemical PhysicsPhysical and Theoretical ChemistryRaman spectroscopyChemical Physics Letters
researchProduct

Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations

2017

We discuss torsional oscillations of highly magnetised neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. More importantly, we show how to use this information to generically constraint properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-depe…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of state (cosmology)OvertoneAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetar01 natural sciencesSuperfluidityNuclear physicsNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExcited state0103 physical sciencesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Vibrational Perturbations and Ligand–Layer Coupling in a Single Crystal of Au144(SC2H4Ph)60 Nanocluster

2015

We have determined vibrational signatures and optical gap of the Au144(PET)60 (PET: phenylethylthiol, SC2H4Ph) nanocluster solvated in deuterated dichloromethane (DCM-D2, CD2Cl2) and in a single crystal. For crystals, solid-state (13)C NMR and X-ray diffraction were also measured. A revised value of 2200 cm(-1) (0.27 eV) was obtained for the optical gap in both phases. The vibrational spectra of solvated AU144(PET)60 closely resembles that of neat PET, while the crystalline-state spectrum exhibits significant inhomogeneous spectral broadening, frequency shifts, intensity transfer between vibrational modes, and an increase in the overtone and combination transition intensities. Spectral broa…

ta114ChemistryOvertoneta221Analytical chemistryOvertone bandMolecular physicsHot bandCrystalMolecular vibrationGeneral Materials SciencePhysical and Theoretical ChemistryRotational–vibrational couplingSingle crystalta116Doppler broadeningThe Journal of Physical Chemistry Letters
researchProduct

Retinal vibrations in bacteriorhodopsin are mechanically harmonic but electronically anharmonic: evidence from overtone and combination bands

2021

AbstractVibrations of the chromophore in the membrane protein bacteriorhodopsin (BR), a protonated Schiff base retinal, have been studied for decades, both by resonance Raman and by infrared (IR) difference spectroscopy. In spite the light-induced IR difference spectrum between the K intermediate (13-cis retinal) and the initial BR state (all-trans retinal) being first published almost 40 years ago, we present here unreported bands in the 2500 to 1800 cm−1 region. We show that the bands between 2500 and 2300 cm−1 originate from overtone and combination transitions of retinal C-C stretches. We assigned some of the newly reported bands below 2300 cm−1 to the combination of retinal C-C stretch…

Materials sciencebiologyInfraredOvertoneAnharmonicityAb initiobiology.proteinResonanceBacteriorhodopsinChromophoreSpectroscopyMolecular physics
researchProduct