Search results for "PARTICLE IDENTIFICATION"

showing 10 items of 191 documents

Performance of $b$-Jet Identification in the ATLAS Experiment

2016

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT an…

detector-systems performancePerformance of High Energy Physics Detectorsecondary [vertex]Elementary particle01 natural sciencesPARTONlaw.inventionSubatomär fysikCHANNELcluster findingscattering [p p]impact parameterGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)протон-протонные столкновенияQBLarge detector-systems performanceHigh energy physics detectorLarge Hadron ColliderLarge detector systems for particle and astroparticle physics; Large detector-systems performance; Pattern recognition cluster finding calibration and fitting methods; Performance of High Energy Physics Detectors; Instrumentation; Mathematical Physicstrack data analysisQUARK PAIR PRODUCTIONbottom [jet]CERN LHC CollPattern recognition cluster finding calibration and fitting method7000 GeV-cmscolliding beams [p p]performanceHADRONIC COLLISIONSCiências Naturais::Ciências FísicasLarge detectorFitting methodHigh energy physicATLAS LHC High Energy Physics510 MathematicsmuonDISTRIBUTIONSUncertainty analysis Astroparticle physicHigh Energy Physics010306 general physicsSystematic uncertainties AlgorithmsAstroparticle physicsCalibration and fitting methodsScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsParticle acceleratorRangingPerformance of High Energy PhysicsCOLLIDERScorrelationExperimental High Energy PhysicsPerformance of High Energy Physics DetectorshadronATLAS детекторБольшой адронный коллайдерcharm [jet]Elementary particleHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental TechniquesInstrumentationUncertainty analysisMathematical PhysicsPhysicsPattern recognition cluster finding calibration and fitting methods4. EducationATLAS experimentSettore FIS/01 - Fisica SperimentaleDetectorsflavor [jet]calibration and fitting methodsATLASLarge Hadron ColliderLarge detector systems for particle and astroparticle physics; Large; detector-systems performance; Pattern recognition cluster finding; calibration and fitting methods; Performance of High Energy Physics; Detectors; PRODUCTION CROSS-SECTION; QUARK PAIR PRODUCTION; ROOT-S=7 TEV; PARTON; DISTRIBUTIONS; HADRONIC COLLISIONS; MATRIX-ELEMENTS; LHC; COLLIDERS; DETECTOR; CHANNEL8. Economic growthCalibrationparticle identification [bottom]LHCImpact parameterParticle Physics - ExperimentParticle physicsdata analysis method530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciences530MATRIX-ELEMENTSparticle identification [charm]on-line [trigger]Pattern recognition0103 physical sciencesComplementary methodddc:610DETECTORROOT-S=7 TEVCluster findingFísicaLarge detector systems for particle and astroparticle physics; Large detector-systems performance; Pattern recognition cluster finding calibration and fitting methods; Performance of High Energy Physics DetectorsPattern recognition systemcalibrationtracksPRODUCTION CROSS-SECTIONefficiencyHadronLarge detector systems for particle and astroparticle physicLargeHigh Energy Physics::ExperimentStatistical correlationstatisticalexperimental results
researchProduct

Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data

2019

This paper describes the reconstruction of electrons and photons with the ATLAS detector, employed for measurements and searches exploiting the complete LHC Run 2 dataset. An improved energy clustering algorithm is introduced, and its implications for the measurement and identification of prompt electrons and photons are discussed in detail. Corrections and calibrations that affect performance, including energy calibration, identification and isolation efficiencies, and the measurement of the charge of reconstructed electron candidates are determined using up to 81 fb−1 of proton-proton collision data collected at √s=13 TeV between 2015 and 2017.

electronPhoton:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Protonparticle identification: efficiency13000 GeV-cmsElectron01 natural sciences7. Clean energyParticle identificationphoton: particle identification030218 nuclear medicine & medical imagingParticle identification methods; Performance of high energy physics detectorsHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Particle identification methods0302 clinical medicineSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]InstrumentationMathematical PhysicsPhysicsSettore FIS/01Performance of high energy physics detectorsLarge Hadron ColliderDetectorphotonATLAScalibration [energy]medicine.anatomical_structure:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollLHCParticle Physics - Experimentperformancep p: scatteringCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesNuclear physicsParticle identification method03 medical and health sciencesparticle identification: performanceAtlas (anatomy)0103 physical sciencesmedicineCalibrationddc:610High Energy PhysicsScience & Technologyelectron: particle identification010308 nuclear & particles physicshep-exenergy: calibrationefficiencyExperimental High Energy PhysicsPerformance of High Energy Physics Detectorsp p: colliding beamsexperimental results
researchProduct

Jet-like correlations with neutral pion triggers in pp and central Pb–Pb collisions at 2.76 TeV

2016

Physics letters / B B763, 238 - 250 (2016). doi:10.1016/j.physletb.2016.10.048

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ROOT-S(NN)=200 GEVQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONSHadronATLAS DETECTORCOLLABORATION01 natural sciencespi: triggerfragmentation functionParticle identificationHigh Energy Physics - ExperimentQUARK-GLUON PLASMAHADRON CORRELATIONSHigh Energy Physics - Experiment (hep-ex)ALICEp-Pb collisionsANISOTROPIC FLOWLEAD-LEADscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVPERSPECTIVENuclear ExperimentMonte CarloNuclear ExperimentPhysicsTime projection chamberHADRONSPerturbative QCDneutral pion ; lead-lead ; correlationsuppressioncharged particlelcsh:QC1-999Charged particleTRANSVERSE-MOMENTUM DEPENDENCE CENTRAL AU+AU COLLISIONS LEAD-LEAD COLLISIONS PLUS AU COLLISIONS QUARK-GLUON PLASMA HADRON CORRELATIONS ROOT-S-NN=2.76 TEV ROOT-S(NN)=200 GEV CHARGED-PARTICLES ANISOTROPIC FLOW.:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CHARGED-PARTICLESflowLEAD-LEAD COLLISIONSperturbation theory [quantum chromodynamics]correlation: two-particleCOLLISIONSParticle physicsp p: scatteringPLUS AU COLLISIONSNuclear and High Energy PhysicseducationVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtriggerstrigger [pi]114 Physical sciencesQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD; COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONS530ROOT-S-NN=2.76 TEVNuclear physicsPionTRANSVERSE-MOMENTUM DEPENDENCEscattering [heavy ion]0103 physical sciencesFragmentation functionddc:530Nuclear Physics - Experimentquantum chromodynamics: perturbation theory010306 general physicscapturetwo-particle correlationstwo-particle [correlation]enhancementSUPPRESSIONneutral pionVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431ta114CENTRAL AU+AU COLLISIONS010308 nuclear & particles physicsbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.lead-leadcorrelationQuark–gluon plasmaproton-proton collisionsHigh Energy Physics::Experimenthadronlcsh:Physics
researchProduct

Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

2014

The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass ener…

interaction [p nucleus]data acquisitionPhysics::Instrumentation and DetectorsCiencias FísicasNuclear engineeringinteraction [p p]7. Clean energy01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Particle identification methodsData acquisitionParticle Identification Methodsperformance [monitoring]Naturvetenskap[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationQCMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Settore FIS/01 - Fisica SperimentaleDetectorATLASCalorimeterCERN LHC Collmedicine.anatomical_structurePhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCNatural SciencesCIENCIAS NATURALES Y EXACTASParticle Physics - ExperimentnoiseCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesCalorimeters; Large detector systems for particle and astroparticle physics; Particle identification methods; Instrumentation; Mathematical Physics530Nuclear physicsParticle identification methodCalorimetersParticle identification methods; Calorimeters; Large detector systems for particle and astroparticle physicsscattering [heavy ion]Atlas (anatomy)0103 physical sciencesCalibrationmedicineFysikHigh Energy Physicsddc:610010306 general physicsCalorimeters; Large detector systems for particle and astroparticle physics; Particle identification methodsCiencias ExactasCalorimeterleadScience & TechnologyLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsFísica//purl.org/becyt/ford/1.3 [https]calibrationAstronomíamissing-energy [transverse momentum]Data qualityExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLarge Detector Systems for Particle and Astroparticle Physicsliquid argon [calorimeter]
researchProduct

Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino Beam

2020

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40 σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and a…

muon antineutrino beamGeneral Physics and Astronomyantineutrino/mu: secondary beamKAMIOKANDEantineutrino/e: particle identification01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)secondary beam [neutrino/mu][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino/e: particle identificationQCPhysics02 Physical SciencesPhysicsJ-PARC LabT2K experimentelectron antineutrinoT2K CollaborationkinematicsPhysical SciencesParticle Physics - ExperimentT2K experiment in an accelerator-producedGeneral Physics530 PhysicsPhysics MultidisciplinaryFOS: Physical sciencesparticle identification [antineutrino/e]Neutrino beamsecondary beam [antineutrino/mu]530Physics::GeophysicsNuclear physics0103 physical sciencesmixingddc:530010306 general physics01 Mathematical SciencesMuonScience & Technologyparticle identification [neutrino/e]hep-exbackgroundHigh Energy Physics - Experiment; High Energy Physics - Experimentneutrino/mu: secondary beamantineutrino: oscillationoscillation [antineutrino]Elementary Particles and FieldsHigh Energy Physics::ExperimentPMNSElectron neutrinoBeam (structure)Free parameterexperimental results
researchProduct

Performance of the ALICE experiment at the CERN LHC

2014

ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

p-p and Pb-Pb and p-Pb collisions at the LHCPhysics::Instrumentation and Detectors01 natural sciences07.05.-tParticle identificationHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEData acquisition29.40.-nAtomic and Molecular Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAnalysis methodPhysicsLarge Hadron ColliderLHC; ALICE; heavy-ion collisions; particle detectors.Physicsparticle detectorsAtomic and Molecular Physics and Optics3. Good healthPRIRODNE ZNANOSTI. Fizika.LHCParticle Physics - Experimentheavy-ion collisionNuclear and High Energy PhysicsParticle physicsGroup method of data handlingFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsLHC; ALICE; heavy-ion collisions; particle detectors29.85.-c0103 physical sciences010306 general physicsALICE; Heavy-ion collisions; LHC; Particle detectors; Atomic and Molecular Physics and Optics; Astronomy and Astrophysics; Nuclear and High Energy Physics010308 nuclear & particles physics25.75.-qALICE experimentAstronomy and Astrophysicsheavy-ion collisionsNATURAL SCIENCES. Physics.Physics::Accelerator Physics25.75.-q; 29.40.-n; 29.85.-c; 07.05.-t; LHC ALICE heavy-ion collisions particle detectorsHigh Energy Physics::ExperimentHeavy ionALICE; Heavy-ion collisions; LHC; Particle detectorsand OpticsALICE (propellant)Detector performanceInternational Journal of Modern Physics A
researchProduct

The PANDA Endcap Disc DIRC

2018

Journal of Instrumentation 13(02), C02002 - C02002 (2018). doi:10.1088/1748-0221/13/02/C02002

particle identification [K]Physics::Instrumentation and Detectors61001 natural sciencesDIRCK: particle identificationOpticsPionDetection of internally reflected Cherenkov light0103 physical sciencesparticle identification [pi]ddc:610010306 general physicsNuclear ExperimentInstrumentationMathematical PhysicsCherenkov radiationPhysicsCherenkov counter: designRange (particle radiation)010308 nuclear & particles physicsbusiness.industryPANDADetectorSolid angleDESYLight guideTest beamdesign [Cherenkov counter]Radiator (engine cooling)Facility for Antiproton and Ion ResearchHigh Energy Physics::ExperimentPhotonicsbusinesspi: particle identificationperformance
researchProduct

A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR

2018

The GEM-TPC [1] described herein will be part of the standard beam-diagnostics equipment of the Super-FRS [2] . This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z=1 up to Z=92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs o…

radioactive ion beamNuclear and High Energy PhysicsProtonfragment separatorPhysics::Instrumentation and Detectorssuper-FRSchemistry.chemical_elementTracking (particle physics)01 natural sciences7. Clean energyParticle identificationGSIXenonOptics0103 physical sciencesseurantaNuclear Experiment010306 general physicsInstrumentationImage resolutionPhysicsTime projection chamberta114010308 nuclear & particles physicsProjectilebusiness.industrytrackingfairtime projection chamberbeam adjustmentchemistrygas electron multiplierGas electron multiplierbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory

2021

The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…

showers: energylongitudinal [showers]interaction: modelPhysics::Instrumentation and DetectorsAstronomyCalibration and fitting methods; Cluster finding; Data analysis; Large detector systems for particle and astroparticle physics; Particle identification methods; Pattern recognition01 natural sciencesHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Particle identification methodscluster findingsurface [detector]ObservatoryLarge detector systemsInstrumentationMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsPattern recognition cluster finding calibration and fitting methodsPhysicsSettore FIS/01 - Fisica Sperimentalemodel [interaction]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsData analysicalibration and fitting methodsenergy [showers]AugerobservatoryPattern recognition cluster finding calibration and fitting methodastroparticle physicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airneural networkAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Data analysisFOS: Physical sciences610Cosmic raydetector: fluorescencePattern recognition0103 physical sciencesddc:530High Energy Physicsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic radiation: UHEstructureparticle physicsnetwork: performance010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias ExactasCherenkov radiationfluorescence [detector]Pierre Auger ObservatoryCalibration and fitting methodsmass spectrum [nucleus]showers: atmospheredetector: surfacehep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsCluster findingFísicaresolutioncalibrationComputational physicsperformance [network]Cherenkov counterAir showerLarge detector systems for particle and astroparticle physicExperimental High Energy PhysicsHigh Energy Physics::Experimentnucleus: mass spectrumshowers: longitudinalRAIOS CÓSMICOSEnergy (signal processing)astro-ph.IM
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct