Search results for "PDEs"

showing 10 items of 505 documents

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Dirichlet approximation and universal Dirichlet series

2016

We characterize the uniform limits of Dirichlet polynomials on a right half plane. In the Dirichlet setting, we find approximation results, with respect to the Euclidean distance and {to} the chordal one as well, analogous to classical results of Runge, Mergelyan and Vitushkin. We also strengthen the notion of universal Dirichlet series.

Pure mathematicsMathematics - Complex VariablesUniversal seriesApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsMathematics::Spectral Theory16. Peace & justice01 natural sciencesDirichlet distributionEuclidean distancesymbols.namesakeChordal graph0103 physical sciencesRight half-planeFOS: Mathematics30K10symbols010307 mathematical physicsComplex Variables (math.CV)0101 mathematicsDirichlet seriesMathematicsProceedings of the American Mathematical Society
researchProduct

Quantitative Properties on the Steady States to A Schr\"odinger-Poisson-Slater System

2014

A relatively complete picture on the steady states of the following Schr$\ddot{o}$dinger-Poisson-Slater (SPS) system \[ \begin{cases} -\Delta Q+Q=VQ-C_{S}Q^{2}, & Q>0\text{ in }\mathbb{R}^{3}\\ Q(x)\to0, & \mbox{as }x\to\infty,\\ -\Delta V=Q^{2}, & \text{in }\mathbb{R}^{3}\\ V(x)\to0 & \mbox{as }x\to\infty. \end{cases} \] is given in this paper: existence, uniqueness, regularity and asymptotic behavior at infinity, where $C_{S}>0$ is a constant. To the author's knowledge, this is the first uniqueness result on SPS system.

Mathematics - Analysis of PDEs
researchProduct

A sharp lower bound for some neumann eigenvalues of the hermite operator

2013

This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain $\Omega$, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue $\mu_1^{odd}(\Omega)$ with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem. As an immediate consequence, in the class of domains for which $\mu_1(\Omega)=\mu_1^{odd}(\Omega)$, we get an explicit lower bound for the difference between $\mu(\Omega)$ and the first Neumann eigenvalue of any strip.

Hermite operatorMathematics - Analysis of PDEsNeumann eigenvaleSettore MAT/05 - Analisi MatematicaApplied MathematicsFOS: MathematicsMathematics::Spectral TheoryAnalysis35J7035P15Analysis of PDEs (math.AP)symmetry
researchProduct

Free boundary methods and non-scattering phenomena

2021

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

FOS: Physical sciencesBoundary (topology)01 natural sciencesinversio-ongelmatTheoretical Computer ScienceMathematics - Analysis of PDEsMathematics (miscellaneous)ConverseFOS: MathematicsPoint (geometry)0101 mathematicsMathematical PhysicsComplement (set theory)MathematicsosittaisdifferentiaaliyhtälötQuadrature domainsScatteringApplied MathematicsResearch010102 general mathematicsMathematical analysisMathematical Physics (math-ph)010101 applied mathematicsComputational MathematicsObstacleInverse scattering problemAnalysis of PDEs (math.AP)Research in the Mathematical Sciences
researchProduct

Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry

2017

This work deals with free transport equations with partly diffuse stochastic boundary operators in slab geometry. Such equations are governed by stochastic semigroups in $L^{1}$ spaces$.\ $We prove convergence to equilibrium at the rate $O\left( t^{-\frac{k}{2(k+1)+1}}\right) \ (t\rightarrow +\infty )$ for $L^{1}$ initial data $g$ in a suitable subspace of the domain of the generator $T$ where $k\in \mathbb{N}$ depends on the properties of the boundary operators near the tangential velocities to the slab. This result is derived from a quantified version of Ingham's tauberian theorem by showing that $F_{g}(s):=\lim_{\varepsilon \rightarrow 0_{+}}\left( is+\varepsilon -T\right) ^{-1}g$ exists…

Work (thermodynamics)Generator (category theory)010102 general mathematicsBoundary (topology)Geometry[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencesDomain (mathematical analysis)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMathematics - Analysis of PDEsBounded functionConvergence (routing)SlabFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalysisSubspace topologyMathematicsMathematical physicsAnalysis of PDEs (math.AP)
researchProduct

Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality

2016

We provide a sharp quantitative version of the Gaussian concentration inequality: for every $r>0$, the difference between the measure of the $r$-enlargement of a given set and the $r$-enlargement of a half-space controls the square of the measure of the symmetric difference between the set and a suitable half-space. We also prove a similar estimate in the Euclidean setting for the enlargement with a general convex set. This is equivalent to the stability of the Brunn-Minkowski inequality for the Minkowski sum between a convex set and a generic one.

Pure mathematicsGaussianConvex setkvantitatiivinen tutkimus01 natural sciencesMeasure (mathematics)Square (algebra)010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsQuantitative Isoperimetric InequalitiesFOS: MathematicsMathematics::Metric Geometry0101 mathematicsConcentration inequalitySymmetric differenceMathematicsmatematiikkaApplied MathematicsProbability (math.PR)010102 general mathematicsMinkowski inequalityMinkowski additionBrunn–Minkowski inequalityGaussian concentration inequalitysymbols49Q20 52A40 60E15Mathematics - ProbabilityAnalysisAnalysis of PDEs (math.AP)Calculus of Variations and Partial Differential Equations
researchProduct

On the second-order regularity of solutions to the parabolic p-Laplace equation

2022

AbstractIn this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that $$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$ D ( D u p - 2 + s 2 D u ) exists as a function and belongs to $$L^{2}_{\text {loc}}$$ L loc 2 with $$s>-1$$ s > - 1 and $$1<p<\infty $$ 1 < p < ∞ . The range of s is sharp.

osittaisdifferentiaaliyhtälötp-parabolic functionstime derivativeSobolev regularityMathematics::Analysis of PDEsfundamental inequalityWeak solutionsMathematics (miscellaneous)Fundamental inequalityweak solutionsGRADIENT111 MathematicsTime derivativeEQUIVALENCE
researchProduct

Zero viscosity limit of the Oseen equations in a channel

2001

Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics.

Solution formulaApplied MathematicsPrandtl numberMathematical analysisMathematics::Analysis of PDEsAnalysiAsymptotic expansionEuler equationsComputational Mathematicssymbols.namesakeBoundary layerElliptic operatorBoundary layerAsymptotic expansion; Boundary layer; Oseen equations; Solution formula; Zero viscosity limit; Mathematics (all); Analysis; Applied MathematicssymbolsInitial value problemMathematics (all)Boundary value problemViscosity solutionOseen equationZero viscosity limitAnalysisOseen equationsMathematics
researchProduct

Cheeger-harmonic functions in metric measure spaces revisited

2013

Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)Mathematics - Metric GeometryFOS: MathematicsMetric Geometry (math.MG)Analysis of PDEs (math.AP)
researchProduct