Search results for "PDEs"
showing 10 items of 505 documents
Asymptotic mean value formulas for parabolic nonlinear equations
2021
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed
A Quantitative Analysis of Metrics on Rn with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows
2017
We prove a quantitative structure theorem for metrics on $\mathbf{R}^n$ that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in $\mathbf{R}^n$ related to the Yamabe flow.
The Poisson embedding approach to the Calderón problem
2020
We introduce a new approach to the anisotropic Calder\'on problem, based on a map called Poisson embedding that identifies the points of a Riemannian manifold with distributions on its boundary. We give a new uniqueness result for a large class of Calder\'on type inverse problems for quasilinear equations in the real analytic case. The approach also leads to a new proof of the result by Lassas and Uhlmann (2001) solving the Calder\'on problem on real analytic Riemannian manifolds. The proof uses the Poisson embedding to determine the harmonic functions in the manifold up to a harmonic morphism. The method also involves various Runge approximation results for linear elliptic equations.
Recovery of time-dependent coefficients from boundary data for hyperbolic equations
2019
We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.
Fractal Weyl law for open quantum chaotic maps
2014
We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
2017
For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Supersymmetric structures for second order differential operators
2012
Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators, coupled to two heat baths, we show the non-existence of a smooth supersymmetric structure, for a suitable interaction potential, provided that the temperatures of the baths are different.
An upper gradient approach to weakly differentiable cochains
2012
Abstract The aim of the present paper is to define a notion of weakly differentiable cochain in the generality of metric measure spaces and to study basic properties of such cochains. Our cochains are (sub)additive functionals on a subspace of chains, and a suitable notion of chains in metric spaces is given by Ambrosio–Kirchheimʼs theory of metric currents. The notion of weak differentiability we introduce is in analogy with Heinonen–Koskelaʼs concept of upper gradients of functions. In one of the main results of our paper, we prove continuity estimates for cochains with p-integrable upper gradient in n-dimensional Lie groups endowed with a left-invariant Finsler metric. Our result general…
Localized forms of the LBB condition and a posteriori estimates for incompressible media problems
2018
Abstract The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompres…
Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian
2010
We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.