Search results for "PDEs"

showing 10 items of 505 documents

Existence and comparison results for a singular semilinear elliptic equation with a lower order term

2014

This paper deals with the homogeneous Dirichlet problem for a singular semilinear elliptic equation with a first order term. When the datum is bounded we prove an existence result and we show that any solution can be compared with the solution to a suitable symmetrized problem.

Dirichlet problemSharp a priori estimatesSingular elliptic problems with gradient termApplied MathematicsGeneral MathematicsNumerical analysisMathematical analysisMathematics::Analysis of PDEsGeodetic datumSymmetrizationTerm (time)Elliptic curveSingular solutionSettore MAT/05 - Analisi MatematicaBounded functionSymmetrizationMathematics
researchProduct

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Uniform rectifiability implies Varopoulos extensions

2020

We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…

Dirichlet problemosittaisdifferentiaaliyhtälötPure mathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsepsilon-approximabilityBoundary (topology)Codimensionharmonic measureharmoninen analyysiMeasure (mathematics)uniform rectifiabilityCarleson measureMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsNorm (mathematics)solvability of the Dirichlet problemClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereRectifiable setCarleson measure estimateAnalysis of PDEs (math.AP)MathematicsBMO
researchProduct

$(BV,L^p)$-decomposition, $p=1,2$, of Functions in Metric Random Walk Spaces

2019

In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the corresponding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.

Discrete mathematicsApplied MathematicsImage processingWorkspaceRandom walkThresholding05C80 35R02 05C21 45C99 26A45Mathematics - Analysis of PDEsMetric (mathematics)Decomposition (computer science)FOS: MathematicsAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen

2004

We answer a question of Jost on the validity of Poincare inequalities for metric space-valued functions in a Dirichlet domain. We also investigate the relationship between Dirichlet domains and the Sobolev-type spaces introduced by Korevaar and Schoen.

Discrete mathematicsDirichlet formMathematics::Analysis of PDEsDirichlet L-functionDirichlet's energyMathematics::Spectral Theorysymbols.namesakeDirichlet kernelDirichlet's principlesymbolsGeneral Dirichlet seriesAnalysisDirichlet seriesMathematicsSobolev spaces for planar domainsPotential Analysis
researchProduct

About Aczél Inequality and Some Bounds for Several Statistical Indicators

2020

In this paper, we will study a refinement of the Cauchy&ndash

Discrete mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectlcsh:Mathematics010102 general mathematicsstatistical indicatorsMathematics::Analysis of PDEsVariation (game tree)lcsh:QA1-93901 natural sciences0103 physical sciencesComputer Science (miscellaneous)010307 mathematical physicsCauchy–Buniakowski–Schwarz inequality0101 mathematicsEngineering (miscellaneous)MathematicsSequence (medicine)media_commonMathematics
researchProduct

On the best Lipschitz extension problem for a discrete distance and the discrete ∞-Laplacian

2012

Abstract This paper concerns the best Lipschitz extension problem for a discrete distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension with a discrete ∞-Laplacian problem, which arises as the dynamic programming formula for the value function of some e -tug-of-war games. As in the classical case, we obtain the absolutely minimizing Lipschitz extension of a datum f by taking the limit as p → ∞ in a nonlocal p -Laplacian problem.

Discrete mathematicsMathematics(all)General MathematicsApplied MathematicsMathematics::Analysis of PDEsTug-of-war gamesExtension (predicate logic)Lipschitz continuityDynamic programmingLipschitz domainBellman equationInfinity LaplacianNonlocal p-Laplacian problemLimit (mathematics)Lipschitz extensionLaplacian matrixLaplace operatorMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Sobolev classes of Banach space-valued functions and quasiconformal mappings

2001

We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …

Discrete mathematicsMathematics::Complex VariablesGeneral MathematicsEberlein–Šmulian theoremMathematics::Analysis of PDEsSobolev inequalitySobolev spaceMathematics::Metric GeometryBesov spaceInterpolation spaceBirnbaum–Orlicz spaceMetric differentialAnalysisMathematicsTrace operator
researchProduct

Finitely randomized dyadic systems and BMO on metric measure spaces

2015

Abstract We study the connection between BMO and dyadic BMO in metric measure spaces using finitely randomized dyadic systems, and give a Garnett–Jones type proof for a theorem of Uchiyama on a construction of certain BMO functions. We obtain a relation between the BMO norm of a suitable expectation over dyadic systems and the dyadic BMO norms of the original functions in different systems. The expectation is taken over only finitely randomized dyadic systems to overcome certain measurability questions. Applying our result, we derive Uchiyama’s theorem from its dyadic counterpart, which we also prove.

Discrete mathematicsMathematics::Functional AnalysisDyadic cubeApplied Mathematicsta111Mathematics::Analysis of PDEsMathematics::Classical Analysis and ODEsMetric measure spaceBounded mean oscillationQuantitative Biology::OtherBounded mean oscillationRandomized dyadic systemMetric spaceNorm (mathematics)Dyadic BMOAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

A Mönch type fixed point theorem under the interior condition

2009

Abstract In this paper we show that the well-known Monch fixed point theorem for non-self mappings remains valid if we replace the Leray–Schauder boundary condition by the interior condition. As a consequence, we obtain a partial generalization of Petryshyn's result for nonexpansive mappings.

Discrete mathematicsMathematics::Functional AnalysisGeneralizationApplied MathematicsInterior conditionMathematics::Analysis of PDEsBanach spaceFixed-point theoremType (model theory)Mönch fixed point theoremBanach spacesStrictly star-shaped setLeray–Schauder conditionBoundary value problemAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct