Search results for "PEMFC"

showing 8 items of 8 documents

Phosphomolybdic acid and mixed phosphotungstic/phosphomolybdic acid chitosan membranes as polymer electrolyte for H2/O2 fuel cells

2017

Abstract Flat, free-standing phosphomolybdic acid and mixed phosphotungstic/phosphomolybdic acid chitosan membranes were prepared by in-situ ionotropic gelation process at room temperature on porous alumina support firstly impregnated by heteropolyacid. Scanning electron microscopy revealed the formation of compact and homogenous polymeric membranes, whose thickness resulted to be dependent on reticulation time, and almost independent on the employed heteropolyacid nature and concentration. X-ray diffraction and Fourier transform infrared spectroscopy evidenced the formation of crystalline membranes without appreciable concentration of unprotonated NH 2 groups and heteropolyacid ions with p…

Materials scienceH2–O2PEMFCEnergy Engineering and Power TechnologyCondensed Matter Physic02 engineering and technology010402 general chemistry01 natural sciencesChitosanchemistry.chemical_compoundKeggin structureComposite polymeric membraneOrganic chemistryPhosphotungstic acidFourier transform infrared spectroscopyProton conductorchemistry.chemical_classificationChitosanRenewable Energy Sustainability and the EnvironmentPolymer021001 nanoscience & nanotechnologyCondensed Matter PhysicsH3PW12O400104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataFuel TechnologyMembranechemistryPhosphomolybdic acidH3PMo12O400210 nano-technologyNuclear chemistryInternational Journal of Hydrogen Energy
researchProduct

Performance of H2-fed fuel cell with chitosan/silicotungstic acid membrane as proton conductor

2020

Composite organic–inorganic proton exchange membranes for H2–O2 fuel cells were fabricated by ionotropic gelation process combining a biopolymer (chitosan) with a heteropolyacid (silicotungstic acid). According to scanning electron microscopy analysis, compact, homogeneous and free-standing thin layers were synthesized. X-ray diffraction proved the crystallinity of the fabricated membranes and showed the presence of Chitosan Form I polymorph soon after the reticulation step and of the Form II polymorph after the functionalization step. Fourier-transform infrared spectroscopy demonstrated that the Keggin structure of the heteropolyacid is maintained inside the membrane even after the fabrica…

Materials scienceGeneral Chemical Engineering202 engineering and technologySilicotungstic acidSilicotungstic acid010402 general chemistryElectrochemistry01 natural sciencesChitosanchemistry.chemical_compoundKeggin structureCrystallinityHMaterials ChemistryElectrochemistryProton conductorChitosan021001 nanoscience & nanotechnology–O0104 chemical sciencesComposite membraneMembraneSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryHydrogen fuelPEMFC0210 nano-technology
researchProduct

Improvement in the performance of low temperature H2-O2 fuel cell with chitosanephosphotungstic acid composite membranes

2016

Abstract Free-standing chitosan/phosphotungstic acid polyelectrolyte membranes, prepared by ionotropic gelation on alumina porous supports, were employed as proton conductor in low temperature H 2 –O 2 fuel cell. A drying step on glass substrate was introduced in the fabrication procedure to reduce shrinkage and consequent corrugation. Membranes were tested with electrodes prepared according to different procedures and with two different Pt loadings, namely 0.5 and 1 mg cm −2 . Both the investigated kinds of electrodes allowed to get very promising power peaks of 550 mW cm −2 in spite of the different Pt content. The polarization curves and the electrochemical impedance spectra suggest that…

Materials scienceEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural sciencesH2-O2 PEMFCChitosanchemistry.chemical_compoundPhosphotungstic acidPolarization (electrochemistry)ShrinkageProton conductorChitosanRenewable Energy Sustainability and the EnvironmentHeteropolyacid021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolyelectrolytePt loading0104 chemical sciencesComposite membraneMembraneFuel TechnologySettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringElectrode0210 nano-technology
researchProduct

Chitosan-heteropolyacid complex as high performance membranes for low temperature H2-O2 fuel cell

2014

Settore ING-IND/23 - Chimica Fisica ApplicataChitosan-heteropolyacid complex high performance membranes low temperature H2-O2 fuel cell PEMFC Electrochemical Impedance Spectroscopy XRD SEM EDX
researchProduct

Lavtemperatur brenselceller

2005

Dokumentet er en del av en eksamensoppgave i MEF4200 Energimaterialer ved UiO høsten 2004. Som del av eksamen i emnet MEF4200 Energimaterialer ved Universitetet i Oslo (UiO) høsten 2004 var oppgaven å skrive en populærvitenskapelig artikkel for avgangselever i videregående skole. Artikkelen presenteres her og omhandler lavtemperatur brenselceller. De brenselcelletypene som beskrives er alkaliske brenselceller, PEM-brenselceller og metanolbrenselceller, alle med en driftstemperatur på normalt under 100 °C, og deres bruksområder.

AFCAlkaliske brenselcellerPEM-brenselcellerPEMFCMetanolbrenselcellerDMFCVDP::Matematikk og naturvitenskap: 400
researchProduct

Porous thin films obtained by DLI-CVD as mu-PEMFC catalysts to replace platinum

2016

This work is focused on development of growth protocols by direct liquid injection chemical vapor deposition (DLI-CVD) of catalytic porous films which could be used in proton exchange membrane fuel cells (PEMFC). The aim of this work was to reduce or even proscribe platinum in catalysts having large specific surface area i.e. being very porous. Besides, the aim is also to use mainly low cost precursors.Cerium oxide, which is a material widely used as catalyst, has been chosen to partially substitute platinum. Porous CeO2 layers were obtained by the optimization of processing parameters such as deposition temperature or precursors flow rates. Controlled platinum doping of cerium oxide surfac…

Catalyseur[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryFuel CellPorous layerXPSPiles à combustibleDLI-CVDPEMFCCatalystFilms poreux
researchProduct

Chitosan-phosphotungstic acid complex as membranes for low temperature H2-O2 fuel cell

2015

Abstract Free-standing Chitosan/phosphotungstic acid polyelectrolyte membranes were prepared by an easy and fast in-situ ionotropic gelation process performed at room temperature. Scanning electron microscopy was employed to study their morphological features and their thickness as a function of the chitosan concentration. The membrane was tested as proton conductor in low temperature H 2 –O 2 fuel cell allowing to get peak power densities up to 350 mW cm −2 . Electrochemical impedance measurements allowed to estimate a polyelectrolyte conductivity of 18 mS cm −1 .

ChitosanMaterials scienceScanning electron microscopeRenewable Energy Sustainability and the EnvironmentProton conductingH2-O2 PEMCFEnergy Engineering and Power TechnologyHeteropolyacidConductivityElectrochemistryPolyelectrolyteChitosanComposite membranechemistry.chemical_compoundMembraneSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringPolymer chemistryPhosphotungstic acidElectrical and Electronic EngineeringPhysical and Theoretical ChemistryChitosanHeteropolyacidComposite membraneProton conductingH2–O2 PEMFCProton conductor
researchProduct

Hydrogen Supplied Wireless Charging System for Electric Vehicles

2020

The aim of this work is the experimental characterization of a Wireless Charging System based on IPT (Inductive Power Transfer) supplied by a PEMFC (Proton Exchange Membrane Fuel Cell) in order to verify the possibility of its installation in not electrified areas. A hydrogen-based supply system is designed and assembled with the purpose of having an EV (electrical vehicle) charging station not connected to the main power grid. An efficiency analysis of the wireless transmission system is carried out taking into account external parameters such as distance and misalignment between the transmitter coil and the receiver coil, verifying the integration potentialities of both IPT and fuel cell …

IPTHydrogenComputer sciencebusiness.industry020209 energy020208 electrical & electronic engineeringAutomotive industrychemistry.chemical_elementProton exchange membrane fuel cell02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici7. Clean energyAutomotive engineeringCharging stationchemistry0202 electrical engineering electronic engineering information engineeringWirelessMaximum power transfer theoremFuel cellsFuel CellsWireless power transferPEMFCWireless Power Transferbusiness
researchProduct