Search results for "PERMEABILITY"

showing 10 items of 596 documents

Ion conductance changes associated with spike adaptation in the rapidly adapting stretch receptor of the crayfish.

1975

The time course of the repetitive impulse discharges has been investigated for two high intensities of maintained depolarizing currents, 30 nA and 50 nA, for which the receptor adaptation was complete within 70 msec. The changes in sodium and potassium conductance associated with the decline in spike activity have been analyzed at different instances of time by interrupting in successive experiments the various action potentials in the pulse trains either at the early phase by holding the potential at about -60 mV and recording the inward current (upstroke-gNa) or by evaluating the delayed outward current flowing as the result of a depolarizing voltage pulse which at the end of the action p…

Cell Membrane PermeabilityTime FactorsPhysiologySodiumClinical BiochemistryNeural Conductionchemistry.chemical_elementAction PotentialsBiological Transport ActiveAstacoideaStimulus (physiology)IonPhysiology (medical)AnimalsMembrane potentialSodiumConductanceDepolarizationCrayfishAdaptation PhysiologicalAxonsElectric StimulationchemistryBiophysicsPotassiumMechanoreceptorsStretch receptorPflugers Archiv : European journal of physiology
researchProduct

SPHINGOLIPID TRANSPORT FROM THE TRANSGOLGI NETWORK TO THE APICAL SURFACE IN PERMEABILIZED MDCK CELLS

1992

AbstractWe have measured the transport of de novo synthesized fluorescent analogs of sphingomyelin and glucosylceramide from the trans-Golgi network (TGN) to the apical membrane in basolaterally permeabilized Madin-Darby canine kidney (MDCK) cells. Sphingolipid transport was temperature, ATP and cytosol dependent. Introduction of bovine serum albumin (BSA), which binds fluorescent sphingolipid monomer, into the permeabilized cells, did not affect lipid transport to the apical membrane. Both fluorescent sphingomyelin and glucosylceramide analogs were localized to the lumenal bilayer leaflet of isolated TGN-derived vesicles. These results strongly suggest that both sphingolipids are transport…

Cell Membrane PermeabilityTrans Golgi networkBiophysicsGolgi ApparatusBiologyGlucosylceramidesKidneyBiochemistryCell Linesymbols.namesakeMembrane LipidsDogsStructural BiologyApical membraneGeneticsAnimalsBovine serum albuminStreptolysin OMolecular BiologyLipid TransportSphingolipidsVesicleBiological TransportSerum Albumin BovineCell BiologyGolgi apparatusApical membraneSphingolipid transportSphingolipidSphingomyelinscarbohydrates (lipids)CytosolPermeabilized cellBiochemistryFluorescent lipid analogsymbolsBiophysicsbiology.proteinlipids (amino acids peptides and proteins)SphingomyelinMDCK cell
researchProduct

Release of canine parvovirus from endocytic vesicles

2003

Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A(2) like domain in N-terminus of VP1. In this study we characterized the role of PLA(2) activity on CPV entry process. PLA(2) activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA(2) inhibitors inhibited the viral proliferation suggesting that PLA(2) activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA(2) activity might have a …

Cell Membrane PermeabilityTransferrin receptorParvovirus CanineMembrane permeabilizationEndosomeanimal diseasesvirusesEndocytic cycleEntryBiologyEndocytosisPhospholipases AParvovirusAmiloridechemistry.chemical_compoundCapsidPhospholipase A2VirologyReceptors TransferrinmedicineAnimalsMonensinTransport VesiclesBrefeldin AVesicleBafilomycinDextransBrefeldin ALipid MetabolismEndocytosisAmilorideCell biologyEndocytic vesiclechemistryCatsCapsid ProteinsMacrolidesBafilomycin A1Lysosomesmedicine.drugVirology
researchProduct

The glucose-dependent transport of L-malate in Zygosaccharomyces bailii.

1984

Zygosaccharomyces bailii possesses a constitutive malic enzyme, but only small amounts of malate are decomposed when the cells ferment fructose. Cells growing anaerobically on glucose (glucose cells) decompose malate, whereas fructose cells do not. Only glucose cells show an increase in the intracellular concentration of malate when suspended in a malate-containing solution. The transport system for malate is induced by glucose, but it is repressed by fructose. The synthesis of this transport system is inhibited by cycloheximide. Of the two enantiomers L-malate is transported preferentially. The transport of malate by induced cells is not only inhibited by addition of fructose but also inac…

Cell Membrane PermeabilityZygosaccharomyces bailiiMalic enzymeMalatesFructoseCycloheximideCarbohydrate metabolismBiologyMicrobiologyMalate dehydrogenaseDiffusionchemistry.chemical_compoundSaccharomycesMolecular BiologyTemperatureFructoseBiological TransportGeneral MedicineMembrane transportbiology.organism_classificationYeastGlucosechemistryBiochemistryFermentationCarrier ProteinsAntonie van Leeuwenhoek
researchProduct

Evidence for a selective and electroneutral K+/H+-exchange in Saccharomyces cerevisiae using plasma membrane vesicles

1996

The existence of a K+/H+ transport system in plasma membrane vesicles from Saccharomyces cerevisiae is demonstrated using fluorimetric monitoring of proton fluxes across vesicles (ACMA fluorescence quenching). Plasma membrane vesicles used for this study were obtained by a purification/reconstitution protocol based on differential and discontinuous sucrose gradient centrifugations followed by an octylglucoside dilution/gel filtration procedure. This method produces a high percentage of tightly-sealed inside-out plasma membrane vesicles. In these vesicles, the K+/H+ transport system, which is able to catalyse both K+ influx and efflux, is mainly driven by the K+ transmembrane gradient and ca…

Cell Membrane Permeability[SDV]Life Sciences [q-bio]Coated VesiclesCoated vesicleBiological Transport ActiveBioengineeringSaccharomyces cerevisiaeBiologyH(+)-K(+)-Exchanging ATPaseApplied Microbiology and BiotechnologyBiochemistryMembrane PotentialsCell membraneElectron Transport Complex IVH(+)-K(+)-Exchanging ATPasealpha-MannosidaseMannosidasesGeneticsmedicineCentrifugation Density GradientNa+/K+-ATPaseComputingMilieux_MISCELLANEOUSMembrane potentialVesicleCell MembraneDithiazanineElectron Transport Complex IVIsoxazolesHydrogen-Ion ConcentrationMembranemedicine.anatomical_structureSpectrometry Fluorescence[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryBiophysicsChromatography GelPotassiumProtonsMannoseBiotechnology
researchProduct

Inhibitory effects oftrans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells

2008

International audience; Resveratrol may function as a cancer chemopreventive agent. However, few data are available on the antitumoral activities of its dimer, epsilon-viniferin, also present in human diet. So, the effects of resveratrol, epsilon-viniferin, of their acetylated forms (resveratrol triacetate, epsilon-viniferin pentaacetate) and of vineatrol (a wine grape extract) were compared on human adenocarcinoma colon cells. Resveratrol and resveratrol triacetate inhibit cell proliferation and arrest cell cycle. epsilon-Viniferin and epsilon-viniferin pentaacetate slightly reduce cell proliferation. Vineatrol inhibits cell proliferation and favors an accumulation in the S phase of the ce…

Cell Membrane Permeabilityendocrine system diseasesvineatrolMESH: Cell CycleMESH: DNA ReplicationMESH: Flow CytometryresveratrolResveratrolMESH : Antineoplastic Agents PhytogenicWine grapechemistry.chemical_compoundMESH: Structure-Activity RelationshipMESH: StilbenesStilbenesMESH : Structure-Activity RelationshipMESH: Cell Membrane Permeabilityskin and connective tissue diseasesfood and beveragesDNA NeoplasmMESH : Cell DivisionCell cycleFlow CytometryMESH : Colonic Neoplasmscolon cancerBiochemistryColonic NeoplasmsMESH: Cell Divisioncell cycleMESH : DNA NeoplasmCell Divisionhormones hormone substitutes and hormone antagonistsMESH : DNA ReplicationBiotechnologyDNA ReplicationMESH: XenobioticsMESH: Cell Line TumorMESH : Flow CytometryMESH: Antineoplastic Agents PhytogenicMESH: DNA NeoplasmMESH : XenobioticsBiologyXenobioticsMESH : StilbenesStructure-Activity RelationshipCell Line TumorMESH : Cell Cycle[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumansStructure–activity relationship[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologypolyphenolsS phaseMESH: Colonic NeoplasmsMESH: HumansMESH : Cell Line TumorCell growthorganic chemicalsMESH : HumansAntineoplastic Agents PhytogenicchemistryMESH : Cell Membrane PermeabilityAcetylationCell cultureCancer researchFood ScienceMolecular Nutrition & Food Research
researchProduct

Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric …

2003

AbstractMembrane cholesterol is essential to the activity of at least two structurally unrelated families of bacterial pore-forming toxins, represented by streptolysin O (SLO) and Vibrio cholerae cytolysin (VCC), respectively. Here, we report that SLO and VCC differ sharply in their interaction with liposome membranes containing enantiomeric cholesterol (ent-cholesterol). VCC had very low activity with ent-cholesterol, which is in line with a stereospecific mode of interaction of this toxin with cholesterol. In contrast, SLO was only slightly less active with ent-cholesterol than with cholesterol, suggesting a rather limited degree of structural specificity in the toxin–cholesterol interact…

Cell Membrane Permeabilitygenetic structuresBiophysicsBiologymedicine.disease_causeBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsStructural Biologyotorhinolaryngologic diseasesGeneticsmedicineStreptolysin OMolecular BiologyVibrio cholerae030304 developmental biology0303 health sciencesLiposomeVibrio cholerae cytolysinCholesterolToxinCytotoxinsEnantiomeric cholesterol030302 biochemistry & molecular biologyMembranes ArtificialStereoisomerismCell BiologyFluoresceinseye diseasesRecombinant ProteinsCholesterol-binding cytolysinsMembraneCholesterolchemistryBiochemistryVibrio choleraeLiposomesStreptolysinsProtein–cholesterol interactionlipids (amino acids peptides and proteins)Streptolysinsense organsCytolysinEnantiomerProtein BindingFEBS letters
researchProduct

Soluble N-ethylmaleimide-sensitive-factor attachment protein and N-ethylmaleimide-insensitive factors are required for Ca2+-stimulated exocytosis of …

1996

Ca2+ stimulates exocytosis in permeabilized insulin-secreting cells. To investigate the putative cytosolic components involved in the Ca2+ response, HIT-T15 cells (a pancreatic B-cell line) were permeabilized with streptolysin-O, a procedure that allows rapid exchange of soluble components including macromolecules. We found that in this cell preparation the secretory response to Ca2+ but not to guanosine 5'-[gamma-thio]triphosphate was lost as a function of time and could be restored by rat brain cytosol in a concentration-dependent manner. Reconstitutive activity of rat brain cytosol was found in a high-molecular-mass heat-labile partially N-ethylmaleimide(NEM)-sensitive fraction. The NEM-…

Cell Membrane Permeabilitymedicine.medical_treatmentBlotting WesternVesicular Transport ProteinsGuanosineBiologyBiochemistryExocytosisExocytosislaw.inventionCell Linechemistry.chemical_compoundIslets of LangerhansCytosolBacterial ProteinslawInsulin SecretionmedicineAnimalsInsulinheterocyclic compoundsAttachment proteinMolecular BiologyN-Ethylmaleimide-Sensitive ProteinsBrain ChemistryInsulinN-EthylmaleimideMembrane ProteinsCell BiologyRecombinant ProteinsCell biologyRatsSoluble N-Ethylmaleimide-Sensitive Factor Attachment ProteinsCytosolchemistryEthylmaleimideGuanosine 5'-O-(3-Thiotriphosphate)StreptolysinsRecombinant DNACalciumSoluble NSF attachment proteinCarrier ProteinsResearch ArticleThe Biochemical journal
researchProduct

Induction of apoptosis by arachidonic acid in human retinoblastoma Y79 cells: involvement of oxidative stress

2000

Arachidonic acid administration caused apoptosis in Y79 cells, as shown by typical morphological changes, phosphatidylserine externalization, chromatin condensation, processing and activation of caspase-3 and cleavage of the endogenous caspase substrate poly-(ADP-ribose)-polymerase. Arachidonic acid also caused lamin B cleavage, suggesting caspase-6 activation. Arachidonic acid treatment was accompanied by increased formation of the lipid peroxidation end products malondialdehyde and 4-hydroxy-2-nonenal, lowering in reduced glutathione content and in mitochondrial membrane potential. Inhibiting glutathione synthesis sensitized Y79 cells to apoptosis-inducing stimuli, whilst replenishing red…

Cell SurvivalBlotting WesternApoptosisCell Countmedicine.disease_causeMembrane PotentialsLipid peroxidationCellular and Molecular Neurosciencechemistry.chemical_compoundPhospholipase A2medicineTumor Cells Culturedarachidonic acidHumansCYP2C8biologyDose-Response Relationship DrugRetinoblastomaGlutathioneTrypan BlueMalondialdehydeFlow CytometryGlutathioneSensory SystemsCell biologyMitochondriaOphthalmologyOxidative StressBiochemistrychemistryMitochondrial permeability transition poreCaspasesbiology.proteinArachidonic acidColorimetryPoly(ADP-ribose) PolymerasesOxidative stress
researchProduct

Autolysis of Yeasts

2011

Autolysis of yeast cells occurs after they have completed their life cycle and entered the death phase. It is characterized by a loss of cell membrane permeability, alteration of cell wall porosity, hydrolysis of cellular macromolecules by endogenous enzymes, and subsequent leakage of the breakdown products into the extracellular environment. Although a naturally occurring event, autolysis can be induced by exposing yeasts to elevated temperatures (40–60 °C), organic solvents, or detergents. Yeast autolysis occurs in many foods and beverages, where it may affect their sensory quality and commercial acceptability.

Cell wallHydrolysisAutolysis (biology)Cell membrane permeabilitymedicine.diagnostic_testBiochemistryProteolysisEndogenous enzymesmedicineExtracellularFood scienceBiologyYeast
researchProduct