Search results for "PERTURBATION"
showing 10 items of 811 documents
Quantifying Dynamic Balance in Young, Elderly and Parkinson's Individuals: A Systematic Review
2018
Introduction: Falling is one of the primary concerns for people with Parkinson's Disease and occurs predominately during dynamic movements, such as walking. Several methods have been proposed to quantify dynamic balance and to assess fall risk. However, no consensus has been reached concerning which method is most appropriate for examining walking balance during unperturbed and perturbed conditions, particularly in Parkinson's Disease individuals. Therefore, this systematic review aimed to assess the current literature on quantifying dynamic balance in healthy young, elderly and Parkinson's individuals during unperturbed and perturbed walking. Methods: The PubMed database was searched by ti…
Extraordinary tuning of a nanocavity by a near-field probe
2011
Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.
Some perturbation results through localized SVEP
2016
Some classical perturbation results on Fredholm theory are proved and extended by using the stability of the localized single-valued extension property under Riesz commuting perturbations. In the last part, we give some results concerning the stability of property (gR) and property (gb.
Convergence of KAM iterations for counterterm problems
1998
Abstract We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.
Dark coupling and gauge invariance
2010
We study a coupled dark energy–dark matter model in which the energymomentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs
2019
When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…
Dark coupling
2009
30 pages, 10 figures, 3 tables.-- Pre-print archive.
The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273
2006
Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN. We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273. We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001), and one in which the effects of jet precession and the injection of discrete compone…
YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission
2013
Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…
Computation of anthropogenic sulphate aerosol forcing using radiative perturbation theory
1994
The radiative forcing of the climate by anthropogenic aerosols has been a matter of some concern for many years now, especially in the northern hemisphere. Recently in these pages, Charlson et al. attempted to quantify this forcing. However, that calculation involved relatively crude optical and radiative transfer models. In this paper, we use a far more detailed sulphate optical model, and employ radiative perturbation theory (a technique ideally suited to answering questions of this sort) to repeat this radiation calculation. We obtain results which are similar to Charlson et al., provided that proper allowance is made for the effects of humidity. DOI: 10.1034/j.1600-0889.1994.00003.x