Search results for "PERTURBATION"
showing 10 items of 811 documents
LIGHT QUARK MASSES FROM QCD SUM RULES
2013
Recent QCD sum rule determinations of the light quark masses are reviewed. In the case of the strange quark mass, possible uncertainties are discussed in the framework of finite energy sum rules.
Hadron structure at lowQ2
2007
This review deals with the structure of hadrons, strongly interacting many-body systems consisting of quarks and gluons. These systems have a size of about 1 fm, which shows up in scattering experiments at low momentum transfers $Q$ in the GeV region. At this scale the running coupling constant of Quantum Chromodynamics (QCD), the established theory of the strong interactions, becomes divergent. It is therefore highly intriguing to explore this theory in the realm of its strong interaction regime. However, the quarks and gluons can not be resolved at the GeV scale but have to be studied through their manifestations in the bound many-body systems, for instance pions, nucleons and their reson…
Anisotropic quark stars with an interacting quark equation of state
2019
A deep exploration of the parameter space that relates the interacting equation of state with the bag constant B, and the interaction parameter a, is fundamental for the construction of diverse models of quark stars. In particular, the anisotropy of quark stars with a well-motivated quantum chromodynamics (QCD) equation of state is presented here. The contribution of the fourth order corrections parameter ($\mathrm{a}$) of the QCD perturbation on the radial and tangential pressure generate significant effects on the mass-radius relation and the stability of the quark star. An adequate set of solutions for several values of the bag factor and the interaction parameter are used in order to ca…
Observation of instabilities in a Paul trap with higher-order anharmonicities
1995
Systematic measurements of the relative ion number stored in a Paul trap within the stability diagram given by the solution of the equation of motion reveal many lines, where only few or no ions can be confined. The observations can be explained by the presence of perturbations from higher-order components in the trapping potential, which is a quadrupole potential in the ideal case. The resonances follow the equation (nr/2)βr + (nr/2)βz = 1,nr +nz =N, where 2N is the order of the perturbation,nr,nz are integer andβr,βz are stability parameters of the trap. The experiments were performed on H+ and H2+ ions, which are detected after a storage time of 0.3 s by ejection from the trap.
Low-energy couplings of QCD from current correlators near the chiral limit
2004
We investigate a new numerical procedure to compute fermionic correlation functions at very small quark masses. Large statistical fluctuations, due to the presence of local ``bumps'' in the wave functions associated with the low-lying eigenmodes of the Dirac operator, are reduced by an exact low-mode averaging. To demonstrate the feasibility of the technique, we compute the two-point correlator of the left-handed vector current with Neuberger fermions in the quenched approximation, for lattices with a linear extent of L~1.5 fm, a lattice spacing a~0.09 fm, and quark masses down to the epsilon-regime. By matching the results with the corresponding (quenched) chiral perturbation theory expres…
Tests of quark-hadron duality in tau-decays
2016
An exhaustive number of QCD finite energy sum rules for $\tau$-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension $d=2$ condensate, the equality of the gluon condensate extracted from vector or axial vector spectral functions, the Weinberg sum rules, the chiral condensates of dimensions $d=6$ and $d=8$, as well as the extraction of some low-energy parameters of chiral perturbation theory. Suitable pinched linear integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations and experimental errors. We find no compelling indications of duality v…
Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks
2010
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N_f = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a~0.078 fm and a~0.086 fm with lattice sizes ranging from L~1.9 fm to L~2.8 fm. We measure with high statistical precision the light pseudoscalar mass m_PS and decay constant f_PS in a range 270 < m_PS < 510 MeV and determine the low energy parameters f_0, l_3 and l_4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of…
Dynamical twisted mass fermions with light quarks
2007
We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \bar{l}_3 and \bar{l}_4 are evaluated with small statistical errors.
Light meson physics from maximally twisted mass lattice QCD
2009
40 pages, 5 figures, 8 tables, 3 appendix.-- PACS: 11.15.Ha; 12.38.Gc; 12.39.Fe
Low-lying even parity meson resonances and spin-flavor symmetry revisited
2013
We review and extend the model derived in Garcia-Recio et al. [Phys. Rev. D 83, 016007 (2011)] to address the dynamics of the low-lying even-parity meson resonances. This model is based on a coupled-channels spin-flavor extension of the chiralWeinberg-Tomozawa Lagrangian. This interaction is then used to study the S-wave meson-meson scattering involving members not only of the pi octet, but also of the rho nonet. In this work, we study in detail the structure of the SU(6)-symmetry-breaking contact terms that respect (or softly break) chiral symmetry. We derive the most general local (without involving derivatives) terms consistent with the chiral-symmetry-breaking pattern of QCD. After intr…