Search results for "PHONON"
showing 10 items of 466 documents
Splitting of the surface phonon modes in wurtzite nanowires
2013
We analyze the surface optical modes of GaN nanowires (NW) and perform a comparative study with the characteristics expected for other polar NWs. The theoretical analysis of the modes is performed within the context of the effective medium theory that takes into account the dipolar interaction between neighboring NWs (Maxwell-Garnett approximation). It is shown that deviations of the exciting light from the NWs axis, which coincides with the wurtzite c-axis, result in the anticrossing of two distinct surface phonon branches, leading to their splitting in axial and planar components and the appearance of two peaks in the Raman spectra. Additional calculations are performed that determine th…
Anticrossing of axial and planar surface-related phonon modes in Raman spectra of self-assembled GaN nanowires
2012
cited By 17; International audience; GaN columnar nanostructures usually called nanowires have been investigated by micro-Raman spectroscopy. In addition to conventional Raman scattering by confined optical phonons of a wurtzite structure (i.e., E 2h and QLO modes), an unusual two peaks band centered near 700 cm -1 is observed and analyzed as a function of several experimental parameters (polarization, filling factor, incidence angle). The surface character of these two modes is experimentally confirmed by their high sensitivity to the dielectric constant of the as-grown nanowires surrounding medium. Calculations describing the nanowires' environment by means of an effective dielectric func…
Optical properties of lithium gallium oxide
2017
Abstract The optical dielectric function tensor of orthorhombic single-crystal LiGaO 2 was determined for polarizations along a , b , and c crystal-axis in the photon energy range from 0.04 eV to 6.5 eV by the generalized spectroscopic ellipsometry. In the far-infrared spectral range from 12.4 meV to 40 meV, the dielectric function was determined from conventional polarized transmittance and polarized reflectance measurements. Lineshape analysis of the dielectric function tensor major components allowed for a determination of the long-wavelength optical phonon characteristics, refractive indices dispersion, and parameters of interband and excitonic optical transitions.
High-Pressure Softening of the Out-of-Plane A2u(Transverse-Optic) Mode of Hexagonal Boron Nitride Induced by Dynamical Buckling
2019
We investigate the highly anisotropic behavior of the in-plane and out-of-plane infrared-active phonons of hexagonal boron nitride by means of infrared reflectivity and absorption measurements under high pressure. Infrared reflectivity spectra at normal incidence on high-quality single crystals show strict fulfillment of selection rules and an unusually long E1u[transverse-optic (TO)] phonon lifetime. Accurate values of the dielectric constants at ambient pressure ϵ0= 6.96, ϵ∞= 4.95, ϵ 0= 3.37, and ϵ∞ = 2.84 have been determined from fits to the reflectivity spectra. The out-of-plane A2u phonon reflectivity band is revealed in measurements on an inclined facet, and absorption measurements a…
Raman scattering inβ-ZnS
2004
The first- and second-order Raman spectra of cubic ZnS $(\ensuremath{\beta}$-ZnS, zinc-blende) are revisited. We consider spectra measured with two laser lines for samples with different isotopic compositions, aiming at a definitive assignment of the observed Raman features and the mechanisms which determine the linewidth of the first order TO and LO Raman phonons. For this purpose, the dependence of the observed spectra on temperature and pressure is investigated. The linewidth of the TO phonons is found to vary strongly with pressure and isotopic masses. Pressure runs, up to 15 GPa, were performed at 16 K and 300 K. Whereas well-defined TO Raman phonons were observed at low temperature in…
Resonant Raman scattering of core-shell GaN/AlN nanowires.
2020
Abstract We have analyzed the electron–phonon coupling in GaN/AlN core–shell nanowires by means of Raman scattering excited at various wavelengths in the ultraviolet spectral range (335, 325 and 300 nm) and as a function of the AlN shell thickness. The detailed analysis of the multi-phonon spectra evidences important differences with excitation energy. Under 325 and 300 nm excitation the Raman process is mediated by the allowed A 1(LO) phonon mode, where the atoms vibrate along the NW axis. Considering its selection rules, this mode is easily accessible in backscattering along the wurtzite c axis. Interestingly, for 335 nm excitation the scattering process is instead mediated by the E 1(LO)…
Acousto-Plasmonic Hot Spots: Driving Enhanced Raman Scattering in Metallic Nanoparticles
2010
We study theoretically and experimentally the coupling of acoustic vibrations (phonons) and surface plasmons in metallic nano-objects. The modulation of the surface charge density allows for the interpretation of experimental Raman-Brillouin spectra in silver nanorods.
Tunable phonon-cavity coupling in graphene membranes
2016
A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling - energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 105) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large …
Optical emission fromSiO2-embedded silicon nanocrystals: A high-pressure Raman and photoluminescence study
2015
We investigate the optical properties of high-quality Si nanocrystals $(\mathrm{NCs})/\mathrm{Si}{\mathrm{O}}_{2}$ multilayers under high hydrostatic pressure with Raman scattering and photoluminescence (PL) measurements. The aim of our study is to shed light on the origin of the optical emission of the Si $\mathrm{NCs}/\mathrm{Si}{\mathrm{O}}_{2}$. The Si NCs were produced by chemical-vapor deposition of Si-rich oxynitride $(\mathrm{SRON})/\mathrm{Si}{\mathrm{O}}_{2}$ multilayers with 5- and 4-nm SRON layer thicknesses on fused silica substrates and subsequent annealing at 1150 \ifmmode^\circ\else\textdegree\fi{}C, which resulted in the precipitation of Si NCs with an average size of 4.1 a…
Photo-induced cubic-to-hexagonal polytype transition in silicon nanowires
2019
Transformation of the crystalline lattice in silicon nanowires from cubic diamond (cub-Si) to hexagonal diamond (hex-Si) was observed under laser irradiation at intensities above 10 kW cm−2 (wavelength of 473 nm) by appearance of an additional peak in their Raman spectra in the range from 490 to 505 cm−1. Formation of the hex-Si phase in SiNWs is favoured by strong mechanical stresses caused by inhomogeneous photo-induced heating, which results in a singlet–doublet splitting of the Raman peaks for LO and TO phonons at about 517 and 510 cm−1, respectively. The estimated values of the photo-induced mechanical stresses and temperatures required for the polytype transformation in SiNWs correspo…