Search results for "PHONON"

showing 10 items of 466 documents

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

2022

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

Condensed Matter - Materials ScienceMultidisciplinarynonlinear opticsphononsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::OpticsElectron-phonon couplingSettore FIS/03 - Fisica Della Materiaultrafast spectroscopypump-robe spectroscopyPhysics::Atomic and Molecular ClustersHHGOptics (physics.optics)Physics - Optics
researchProduct

Inelastic neutron scattering due to acoustic vibrations confined in nanoparticles: theory and experiment

2008

The inelastic scattering of neutrons by nanoparticles due to acoustic vibrational modes (energy below 10 meV) confined in nanoparticles is calculated using the Zemach-Glauber formalism. Such vibrational modes are commonly observed by light scattering techniques (Brillouin or low-frequency Raman scattering). We also report high resolution inelastic neutron scattering measurements for anatase TiO2 nanoparticles in a loose powder. Factors enabling the observation of such vibrations are discussed. These include a narrow nanoparticle size distribution which minimizes inhomogeneous broadening of the spectrum and the presence of hydrogen atoms oscillating with the nanoparticle surfaces which enhan…

Condensed Matter - Materials ScienceQuasielastic scatteringMaterials sciencePhonon scatteringScattering[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::Optics02 engineering and technologyNeutron scatteringInelastic scattering021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesInelastic neutron scattering3. Good healthElectronic Optical and Magnetic MaterialsX-ray Raman scattering0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Scattering theoryAtomic physics010306 general physics0210 nano-technology
researchProduct

Thermal properties in low dimensional structures below 1 K

2009

In this thesis thermal properties of low dimensional structures were experimentally studied at low temperatures with the help of tunnel junction thermometry and the Joule heating technique. The main objects of study were electron-phonon coupling in disordered thin metal films and phonon transport in suspended silicon nitride membranes. Our aim has been to clarify the effect of the phonon dimensionality, i.e. the effect of boundaries to the phonon modes and the transition from 3D to 2D phonons. The dimensionality cross over had not been observed before this work even though it is fabricationally a standard procedure to create the low dimensional environments for nanoscale applications and de…

Condensed Matter::Materials ScienceCondensed Matter::Superconductivityphonon transportlow dimensional structuresSINIS thermometryelectron-phonon couplingthermal relaxationThermal relaxation electron-phonon coupling phonon transport low dimensional structures SINIS thermometry
researchProduct

Lattice Dynamics in Wurtzite Semiconductors: The Bond Charge Model of CdS

1999

An extension of the adiabatic bond charge model of Rustagi and Weber is used to study the lattice dynamic properties of wurtzite-type compounds. The model has been applied to the description of the phonon dispersion of CdS, which has been recently measured by neutron scattering. The agreement with the neutron data is excellent with a small set of physically meaningful parameters. The eigenvector admixture of the E2 modes, calculated at the G-point, agrees with the experimental values obtained through the isotopic mass dependence of the optical modes and ab initio calculations.

Condensed Matter::Materials ScienceCondensed matter physicsChemistryAb initio quantum chemistry methodsPhononLattice (order)NeutronNeutron scatteringCondensed Matter PhysicsAdiabatic processLattice model (physics)Electronic Optical and Magnetic MaterialsWurtzite crystal structurephysica status solidi (b)
researchProduct

Electrical transport with temperature-induced spin disorder in NiMnSb

2019

Abstract We investigate theoretically the combined effect of phonons and magnons caused by finite temperatures on the electrical resistivity of nonstoichiometric half-Heusler NiMnSb alloy. The coherent potential approximation within the alloy analogy model is employed for an efficient treatment of chemical impurities, atomic displacements, and magnetic disorder. Spin fluctuations of local Mn moments are described by two models: (i) uncompensated disordered local moment approach and (ii) tilting of the moments. The calculated resistivity agrees with experimental data, the agreement is good up to 600 K. We show that a strong magnetic disorder leads to a violation of the Matthiessen’s rule for…

Condensed Matter::Materials ScienceMaterials scienceSpin polarizationCondensed matter physicsElectrical resistivity and conductivityPhononImpurityMagnonCoherent potential approximationCurie temperatureCondensed Matter PhysicsSpin (physics)Electronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Properties of the Phonon Gas in Ultrathin Membranes at Low Temperature

1998

We analyze heat conduction by phonons in ultrathin membranes by constructing a new theoreticalframework which implies a crossover from a bulk three-dimensional phonon distribution into a quasi-two-dimensional distribution when the temperature is lowered. We calculate the corresponding changesin the relevant thermodynamic quantities. At the end we make a comparison to experimental data.[S0031-9007(98)07273-1]

Condensed Matter::Materials ScienceMembraneMaterials scienceCondensed matter physicsDistribution (number theory)PhononCondensed Matter::SuperconductivityCrossoverGeneral Physics and AstronomyThermal conductionPhysical Review Letters
researchProduct

Excitation Spectrum of a Linear Chain of Paramagnetic Atoms with Spin-Phonon Interaction

1967

The low-lying energy levels of a paramagnetic chain in the presence of spin-phonon interaction have been investigated. It is shown that there is no gap in the one-particle excitation spectrum.

Condensed Matter::Materials ScienceParamagnetismMaterials scienceChain (algebraic topology)PhononQuantum mechanicsSpectrum (functional analysis)General Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsSpin (physics)Molecular physicsExcitationPhysical Review Letters
researchProduct

Ab Initio Thermodynamics of Oxygen Vacancies and Zinc Interstitials in ZnO.

2015

ZnO is an important wide band gap semiconductor with potential application in various optoelectronic devices. In the current contribution, we explore the thermodynamics of oxygen vacancies and zinc interstitials in ZnO from first-principles phonon calculations. Formation enthalpies are evaluated using hybrid DFT calculations, and phonons are addressed using the PBE and the PBE+U functionals. The phonon contribution to the entropy is most dominant for oxygen vacancies, and their Gibbs formation energy increases when including phonons. Finally, inclusion of phonons decreases the Gibbs formation energy difference of the two defects and is therefore important when predicting their equilibrium c…

Condensed Matter::OtherPhononAb initioWide-bandgap semiconductorchemistry.chemical_elementThermodynamicsZincOxygenOxygen vacancyCondensed Matter::Materials ScienceEntropy (classical thermodynamics)chemistryCondensed Matter::SuperconductivityPhysics::Atomic and Molecular ClustersGeneral Materials SciencePhysical and Theoretical ChemistryThe journal of physical chemistry letters
researchProduct

Extraction dynamics of electrons from magneto-optically trapped atoms

2017

Pulsed photoionization of laser-cooled atoms in a magneto-optical trap (MOT) has the potential to create cold electron beams of few meV bandwidths and few ps pulse lengths. Such a source would be highly attractive for the study of fast low-energy processes like coherent phonon excitation. To study the suitability of MOT-based sources for the production of simultaneously cold and fast electrons, we study the photoionization dynamics of trapped Cs atoms. A momentum-microscope-like setup with a delay-line detector allows for the simultaneous measurement of spatial and temporal electron distributions. The measured patterns are complex, due to the Lorentz force inducing spiral trajectories. Ray-…

Condensed Matter::Quantum GasesPhysics and Astronomy (miscellaneous)PhononChemistry02 engineering and technologyElectronPhotoionization021001 nanoscience & nanotechnology01 natural sciencesPhotoexcitationsymbols.namesakeLaser cooling0103 physical sciencessymbolsPhysics::Atomic PhysicsAtomic physics010306 general physics0210 nano-technologyLorentz forceExcitationBeam (structure)Applied Physics Letters
researchProduct

Replica field theory for anharmonic sound attenuation in glasses

2011

Abstract A saddle-point treatment of interacting phonons in a disordered environment is developed. In contrast to crystalline solids, anharmonic attenuation of density fluctuations becomes important in the hydrodynamic regime, due to a broken momentum conservation. The variance of the shear modulus Δ2 turns out to be the strength of the disorder enhanced phonon–phonon interaction. In the low-frequency regime (below the boson peak frequency) we obtain an Akhiezer-like sound attenuation law Γ ∝ Τω2. Together with the usual Rayleigh scattering mechanism this yields a crossover of the Brillouin linewidth from a ω2 to a ω4 regime. The crossover frequency ωc is fully determined by the boson peak …

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsPhononAttenuationAnharmonicityCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsShear modulusBrillouin zoneCondensed Matter::Materials Sciencesymbols.namesakeMaterials ChemistryCeramics and CompositessymbolsRayleigh scatteringOrder of magnitudeAcoustic attenuationJournal of Non-Crystalline Solids
researchProduct