Search results for "PHOSPHATE"
showing 10 items of 1874 documents
A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate.
2017
Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The “a-polyP/RA-MP” ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differ…
Development of a database for the rapid and accurate routine identification of Achromobacter species by matrix-assisted laser desorption/ionization-t…
2019
International audience; Objectives: Achromobacter spp. are emerging pathogens in respiratory samples from cystic fibrosis patients. The current reference methods (nrdA-sequencing or multilocus sequence typing) can identify 18 species which are often misidentified by conventional techniques as A. xylosoxidans. A few studies have suggested that matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) provides accurate identification of the genus but not of species. The aims of this study were (a) to generate a database for MALDI-TOF/MS Bruker including the 18 species, (b) to evaluate the suitability of the database for routine laboratory identification, and …
The malate sensing two-component system MaeKR is a non-canonical class of sensory complex for C4-dicarboxylates
2017
16 páginas, 7 figuras, 2 tablas
The hydrolysis of 6-phosphogluconolactone in the second step of pentose phosphate pathway occurs via a two-water mechanism.
2018
Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorab…
Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells.
2018
Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacerv…
Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyph…
2018
The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found …
Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity
2017
Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and rescued mouse embryonic fibroblast cell lines. Mitochondria of KO cells were more fragmented, exhibited a reduced ATP concentration, and reduced oxidative phosphorylation (OXPHOS) suggesting an increased importance of ATP generation by other means. Under steady-state conditions, acidification of the growth medium as a readout for glycolysis was similar, but upon inhibition of ATP synthase with oligo…
Curcumin at Low Doses Potentiates and at High Doses Inhibits ABT-737-Induced Platelet Apoptosis
2021
Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated…
2020
Perivascular adipose tissue (PVAT) is the connective tissue surrounding most of the systemic blood vessels. PVAT is now recognized as an important endocrine tissue that maintains vascular homeostasis. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative roles. Vascular oxidative stress is an important pathophysiological event in cardiometabolic complications of obesity, type 2 diabetes, and hypertension. Accumulating data from both humans and experimental animal models suggests that PVAT dysfunction is potentially linked to cardiovascular diseases, and associated with augmented vascular inflammation, oxidative stress, and arterial remodeling. Reactive oxygen species produc…
Amorphous polyphosphate–hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro
2015
There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (10wt.%) the formation of cr…