Search results for "PHOTODISSOCIATION"
showing 10 items of 90 documents
SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES
2012
There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ult…
Soft X-Ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions
2010
We performed 0.3 keV soft X-ray irradiation of a methanol ice at 8 K under ultra-high vacuum conditions. To the best of our knowledge, this is the first time that soft X-rays are used to study photolysis of ice analogs. Despite the low irradiation dose of 10{sup -6} photons molecule{sup -1}, the formation of formaldehyde has been observed. The results of our experiments suggest that X-rays may be a promising candidate to the formation of complex molecules in regions where UV radiation is severely inhibited.
Analysis of mebendazole binding to its target biomolecule by laser flash photolysis
2016
[EN] Mebendazole (MBZ) and related anticancer benzimidazoles act binding the beta-subunit of Tubulin (TU) before dimerization with alpha-TU with subsequent blocking microtubule formation. Laser flash photolysis (LFP) is a new tool to investigate drug-albumin interactions and to determine binding parameters such as affinity constant or population of binding sites. The aim of this study was to evaluate the interactions between the nonfluorescent mebendazole (MBZ) and its target biomolecule TU using this technique. Before analyzing the MBZ@TU complex it was needed to determine the photophysical properties of MBZ triplet excited state ((3)MBZ*) in different media. Hence, 3MBZ* showed a transien…
2015
AbstractLight absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium i…
Observing myoglobin proteinquake with an X-ray free-electron laser
2015
The events following the photodissociation of the bond be- tween myoglobin and its ligand have been extensively studied with a variety of experimental, theoretical and computational methods [1]. The results of these investigations have been rationalized in terms of a model that implies a protein quake- like motion [2], i.e. the propagation of the strain released upon photoexcitation through the protein similar to the prop- agation of acoustic waves during an earthquake. The exper- imental investigations performed so far have been based on spectroscopic measurements or did not have sufficient time- resolution to measure the timescale of such “proteinquake”. We have obtained direct experiment…
Photochemistry of HOSO2 and SO3 and Implications for the Production of Sulfuric Acid
2021
9 pags., 5 figs.
Raman spectroscopy and crystal-field split rotational states of photoproducts CO and H2 after dissociation of formaldehyde in solid argon
2012
Raman signal is monitored after 248 nm photodissociation of formaldehyde in solid Ar at temperatures of 9–30 K. Rotational transitions J = 2 ← 0 for para-H2 fragments and J = 3 ← 1 for ortho-H2 are observed as sharp peaks at 347.2 cm−1 and 578.3 cm−1, respectively, which both are accompanied by a broader shoulder band that shows a split structure. The rovibrational spectrum of CO fragments has transitions at 2136.5 cm−1, 2138.3 cm−1, 2139.9 cm−1, and 2149 cm−1. To explain the observations, we performed adiabatic rotational potential calculations to simulate the Raman spectrum. The simulations indicate that the splitting of rotational transitions is a site effect, where H2 molecules can resi…
The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon
1992
Abstract The optical absorption band at 7.6 eV, which appears in oxygen deficient pure silica, does not correlate with any ESR signal in non-irradiated samples. Longlasting illumination at 80 K in the range of its absorption leads to an increase of the absorption band at 5 eV. Subsequent heating to 290 K restores the initial absorption. These data can be explained as photodissociation and thermal recreation of a complex defect containing a twofold-coordinated silicon defect. This complex defect is responsible for the 7.6 eV absorption band.
Photodissociation of Formaldehyde in Rare Gas (Xe, Kr, Ar, and Ne) Matrixes
2003
Infrared (IR) spectroscopy and electron paramagnetic resonance (EPR) are combined to study photodissociation of formaldehyde at photolysis wavelengths 308, 248, and 193 nm in rare gas matrixes. The...
The influence of internal degrees of freedom on the unimolecular decay of the molecule–cluster compound Au8+CH3OH
2002
Time-resolved photodissociation measurements of the sequential reaction Au8+CH3OH→Au8+→Au7+ and the direct reaction Au8+→Au7+ have been performed for several excitation energies. The production rates and yields of the final state Au7+ in the sequential process are strongly influenced by the excitation energy deposited into the evaporated methanol molecule during the initial fragmentation step. Both the rate constants and yields can be fitted with a single parameter, the cluster–methanol binding energy.