Search results for "PHOTOMULTIPLIER"

showing 10 items of 194 documents

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct

PESIC: An Integrated Front-End for PET Applications

2007

An ASIC front-end has been developed for multi-anode photomultiplier based nuclear imaging devices. Its architecture has been designed to improve resolution and decrease pile-up probability in Positron Emission Tomography systems which employ continuous scintillator crystals. Analog computation elements are isolated from the photomultiplier by means of a current sensitive preamplifier stage. This allows digitally programmable adjustment of every anode gain, also providing better resolution in gamma event position calculation and a shorter front-end deadtime. The preamplifier stage also offers the possibility of using other types of photomultiplier devices such as SiPM. The ASIC architecture…

PhysicsFront and back endsPhotomultiplierSilicon photomultiplierPreamplifierAmplifierNuclear electronicsScintillation counterElectronic engineeringImage resolution2007 15th IEEE-NPSS Real-Time Conference
researchProduct

Search for neutrino emission from gamma-ray sources with the Antares Telescope

2012

ANTARES is the first undersea neutrino detector ever built and presently the neutrino telescope with the largest effective area operating in the Northern Hemisphere. A three- dimensional array of photomultiplier tubes detects the Cherenkov light induced by the muons produced in the interaction of high energy neutrinos with the matter surrounding the detector. The detection of astronomical neutrino sources is one of the main goals of ANTARES. The search for point-like neutrino sources with the ANTARES telescope is described and the preliminary results obtained with data collected from 2007 to 2010 are shown. No cosmic neutrino source has been observed and neutrino flux upper limits have been…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhotomultiplierMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic raylaw.inventionTelescopeNeutrino detectorlawHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaCherenkov radiation
researchProduct

Study of the Planacon XP85012 photomultiplier characteristics for its use in a Cherenkov detector

2016

Main properties of the multi-anode microchannel plate photomultiplier to be used in a Cherenkov detector are discussed. The laboratory test results obtained using irradiation of the MCP-PMT photocathode by picosecond optical laser pulses with different intensities (from single photon regime to the PMT saturation conditions) are presented. peerReviewed

PhysicsHistoryPhotomultiplierPhotonPhysics::Instrumentation and DetectorsCherenkov detectorbusiness.industryPhysics::Medical PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPhysics::OpticsLaserPhotocathodeComputer Science ApplicationsEducationlaw.inventionOpticslawPicosecondMicrochannel plate detectorIrradiationbusinessCherenkov detectorJournal of Physics: Conference Series
researchProduct

Performance study of the fast timing Cherenkov detector based on a microchannel plate PMT

2017

Prototype of the fast timing Cherenkov detector, applicable in high-energy collider experiments, has been developed basing on the modified Planacon XP85012 MCP-PMT and fused silica radiators. We present the reasons and description of the MCP-PMT modification, timing and amplitude characteristics of the prototype including the summary of the detector's response on particle hits at oblique angles and MCP-PMT performance at high illumination rates.

PhysicsHistoryPhotomultiplierPhysics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryCherenkov detectorQuantitative Biology::Tissues and OrgansDetectorAstrophysics::Instrumentation and Methods for Astrophysics01 natural sciencesParticle detectorComputer Science ApplicationsEducationlaw.inventionOpticslaw0103 physical sciencesScintillation counterMeasuring instrumentMicrochannel plate detector010306 general physicsbusinessColliderJournal of Physics: Conference Series
researchProduct

Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

2015

The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules…

PhysicsHistoryPhotomultiplierRange (particle radiation)SpectrometerMesonPhysics::Instrumentation and DetectorsComputer Science ApplicationsEducationCalorimeterNuclear physicsMeasuring instrumentPhysics::Accelerator PhysicsElectronicsNuclear ExperimentBeam (structure)Journal of Physics: Conference Series
researchProduct

Test and Simulation of a LYSO+APD matrix with a tagged Photon Beam from 40 to 300 MeV

2012

Understanding the energy resolution terms for LYSO based calorimeters with APD readout at low energy (< 500 MeV) is relevant both for the completion of the KLOE-2 experiment, at DAΦNE, and for the design of the Mu2e calorimeter. In this work, we present a dedicated comparison between experimental data, taken in 2011 at the MAMI tagged photon beam facility with a crystal matrix prototype, and a full Geant-4 simulation of this detector. The crystal prototype matrix consisted of 9 2×2 × 15 cm3 LYSO crystals read-out by 10×10 mm2 Hamamatsu avalanche photodiodes (APD) surrounded by 8 PbWO4 crystals read-out by Bialkali photomultipliers for outer leakage recovery granting a total transverse cover…

PhysicsHistoryPhotomultiplierbusiness.industryAvalanche photodiodeNoise (electronics)Particle detectorLyso-Computer Science ApplicationsEducationCalorimeterPhotodiodelaw.inventionOpticslawMu2ebusinessJournal of Physics: Conference Series
researchProduct

Construction, Commissioning and First Results of a Highly Granular Hadron Calorimeter with SiPM-on-Tile Read-out

2018

The CALICE collaboration is developing a highly granular Analogue Hadron sampling CALorimeter (AHCAL) for a future electron-positron collider. Very small detection units are required for the AHCAL due to an optimized design for the Particle Flow Algorithm. This is realized with scintillator tiles each wrapped in reflector foil and individually read out by a silicon photomultiplier (SiPM). These scintillator tiles and SiPMs are assembled on readout boards (HCAL Base Unit, HBU) which are integrated later on in the AHCAL detector stack. With this design a higher energy resolution is achievable, but also a large quantity of components (around 8,000,000 scintillator tiles and SiPMs) are needed t…

PhysicsLarge Hadron ColliderCalorimeter (particle physics)Physics::Instrumentation and Detectors010308 nuclear & particles physicsNuclear engineeringDetectorLinearityScintillator01 natural sciences030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineSilicon photomultiplierStack (abstract data type)law0103 physical sciencesDetectors and Experimental TechniquesInfrastructure for advanced calorimeters [14]Collider2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)
researchProduct

Time Of Flight measurements via two LiDAR systems with SiPM and APD

2016

In this paper, we present an experimental comparison of two LiDAR systems, employing the SiPM and the APD as photodetectors, in terms of TOF measurements differing for the distance of the target and at different intensities of ambient light. The use of the APD represents the conventional approach, while the implementation of the SiPM is innovative. The performed measurements achieved very promising results, thus demonstrating the effectiveness of our LiDAR based on SiPM.

PhysicsLiDAR010308 nuclear & particles physicsbusiness.industrySiPM020208 electrical & electronic engineeringTOFPhotodetectorAPD02 engineering and technologyTime of Flight01 natural sciencesSettore ING-INF/01 - ElettronicaSilicon PhotoMultiplierTime of flightSilicon photomultiplierLidarOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsphotodetectorbusiness
researchProduct