Search results for "PHOTON"

showing 10 items of 3171 documents

The peculiarities of the radiation damage accumulation kinetics in the case of defect complex formation

2020

Abstract The kinetics of radiation defect accumulation under irradiation by heavy particles is theoretically analysed under the assumption of defect complex genesis, particularly, the ones of anion and cation vacancies. The obtained analytical mathematical model and revealed peculiarities of radiation dose dependencies can be used for analysis of the experimental results for different crystalline materials for solid-state electronics and photonics.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industryComplex formationRadiation doseKinetics02 engineering and technologyRadiation021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesIon0103 physical sciencesRadiation damageIrradiationPhotonics0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits

2016

Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition b…

010302 applied physicsPhase transitionMaterials scienceGeTe nanowireMechanical EngineeringAll-optical switchingNanowireNanophotonicsBioengineeringNanotechnology02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore ING-INF/01 - Elettronica01 natural sciencesAmorphous solidCoupling (electronics)0103 physical sciencesGeneral Materials ScienceTransient (oscillation)Nanophotonic circuit0210 nano-technologyUltrashort pulseElectronic circuitNano Letters
researchProduct

Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

2021

Review of scientific instruments 92(5), 053703 (2021). doi:10.1063/5.0046567

010302 applied physicsPhotonMaterials scienceElectronPhotoelectric effect01 natural sciencesFluenceSpace charge010305 fluids & plasmas620Electric fieldExtreme ultraviolet0103 physical sciencesddc:620Atomic physicsInstrumentationStorage ring
researchProduct

Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy.

2020

Review of scientific instruments 91(6), 063001 (2020). doi:10.1063/5.0004861

010302 applied physicsPhotonMaterials sciencePhotoemission spectroscopyTi:sapphire laserPhysics::OpticsAngle-resolved photoemission spectroscopyElectronLaser01 natural sciences010305 fluids & plasmaslaw.invention620Electron diffractionlaw0103 physical sciencesHigh harmonic generationCondensed Matter::Strongly Correlated ElectronsAtomic physicsddc:620InstrumentationThe Review of scientific instruments
researchProduct

Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

2017

A ring-shaped magnetic logic device offers two vortex states (clockwise and counterclockwise) to encode bits, with relative stability against external magnetic fields. The dynamics of magnetization switching in such structures, though, still need unraveling. The authors present direct experimental visualization of reproducible, robust switching in magnetic rings via domain-wall automotion, which does not require an applied field. Simulations reveal that annihilation of domain walls through automotion always occurs, with the detailed topology of the walls only influencing the dynamics locally, in line with the experimental results.

010302 applied physicsPhysicsField (physics)Condensed matter physicsMagnetic logicGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions01 natural sciencesVortexMagnetic fieldMagnetizationDomain wall (magnetism)Ferromagnetism0103 physical sciences010306 general physicsTopology (chemistry)Physical Review Applied
researchProduct

Radiation emission at channeling of electrons in a strained layer undulator crystal

2013

Abstract Experiments have been performed at the Mainz Microtron MAMI to explore the radiation emission spectra from a crystalline undulator at electron beam energies of 270 and 855 MeV. The epitaxially grown graded composition strained layer Si 1 - x Ge x undulator had 4-period with a period length λ u = 9.9 μ m . Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation emission from finite single arc elements, taking into account also coherence effects, su…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonSiliconchemistry.chemical_elementElectronUndulator01 natural sciencesSpectral lineCrystalchemistry0103 physical sciencesCathode rayPhysics::Accelerator PhysicsAtomic physicsNuclear Experiment010306 general physicsInstrumentationMicrotronNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

ABALONETM Photosensors for the IceCube experiment

2020

Abstract The ABALONE TM Photosensor Technology (U.S. Pat. 9,064,678) is a modern technology specifically invented for cost-effective mass production, robustness, and high performance. We present the performance of advanced fused-silica ABALONE Photosensors, developed specifically for the potential extension of the IceCube neutrino experiment, and stress-tested for 120 days. The resulting performance makes a significant difference: intrinsic gain of ≈ 6 × 108, total afterpulsing rate of only 5 × 10−3 ions per photoelectron , sub-nanosecond timing resolution, single-photon sensitivity, and unique radio-purity and UV sensitivity, thanks to the fused silica components—at no additional cost to t…

010302 applied physicsPhysicsNuclear and High Energy PhysicsPhotonbusiness.industryDetectorSignificant differencePhotodetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesUv sensitivityIntrinsic gainOptics0103 physical sciencesNeutrino0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Estimation of Photon Flux of the Oxygen Lyman-alpha Line Emitted from the W7-X Plasmas

2020

The low-Z impurities of the magnetic confined fusion plasmas can provide important information about the wall condition and plasma–wall interactions. In order to accomplish this aim, a special spectrometer called “C/O Monitor” was designed for the W7-X experiment. This system is dedicated to measure Lyman-α transitions of four low-Z impurities: carbon (3.4 nm), oxygen (1.9 nm), nitrogen (2.5 nm) and boron (4.9 nm). It is a high throughput and high time resolution spectrometer which allows to measure the line intensities evolution of indicated elements including information of the background (continuum). The designed spectrometer consists of two vacuum chambers positioned nearly horizontally…

010302 applied physicsPhysicsPhoton fluxGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyPlasma021001 nanoscience & nanotechnology01 natural sciencesOxygenchemistry0103 physical sciencesAtomic physics0210 nano-technologyLine (formation)
researchProduct

Analytic $JV$ -Characteristics of Ideal Intermediate Band Solar Cells and Solar Cells With Up and Downconverters

2017

The ideal diode equation is regularly used to describe the $\textit {JV}$ -characteristic of single junction solar cells. The connection between the diode equation and fundamental physics is the application of the Boltzmann approximation to describe the fluxes of photons emitted by the cell. In this paper, this approximation is used to derive analytic $\textit {JV}$ -characteristics for three photovoltaic high-efficiency concepts, intermediate band solar cells, and solar cells optically coupled to up and downconverters. These three concepts share the common feature that they allow excitation of electrons between at least three energy levels, which assures a better utilization of the solar s…

010302 applied physicsPhysicsTheory of solar cellsPhotonbusiness.industryPhotovoltaic systemShockley–Queisser limit02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsComputational physicsMultiple exciton generationsymbols.namesakeOptics0103 physical sciencesBoltzmann constantsymbolsElectrical and Electronic EngineeringConnection (algebraic framework)0210 nano-technologybusinessEnergy (signal processing)IEEE Transactions on Electron Devices
researchProduct

Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity

2008

We report here the direct observation of two-dimensional (2D) Bloch wave interferences in a negative index photonic crystal by using optical near-field microscopy techniques. The photonic crystal is formed by a defectless honeycomb lattice of air holes etched in III-V semiconductor slab. A scanning near-field optical microscope is used to visualize spatially, as well as spectrally, the light distribution inside the photonic crystal. The recorded near-field spectra and maps presented here unambiguously demonstrate the Bloch wave interferences within the photonic crystal. Then, the spectral and spatial evolution of these interferences allows us to recover experimentally the 2D band diagram of…

010302 applied physicsPhysicsbusiness.industryPhysics::OpticsMicrostructured optical fiberCondensed Matter Physics01 natural sciencesYablonoviteElectronic Optical and Magnetic MaterialsOpticsSemiconductorNegative refraction0103 physical sciencesMicroscopyBand diagram[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsbusinessComputingMilieux_MISCELLANEOUSPhotonic crystalBloch wave
researchProduct